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ABSTRACT State machines and a relational database may look like completely unrelated tools, yet they
form an interesting couple. By supporting them with well-established architectural patterns and principles,
we built a model layer of a web application which utilizes the formal aspects of the state machines to aid the
development of the application while standing on traditional technologies. The layered approach fits well
with existing frameworks and the Command-Query Separation pattern provides a horizontal separation and
compatibility with various conceptually distinct storages, while the overall architecture respects RESTful
principles and the features of the underlying SQL database. The integration of the explicitly specified state
machines as first-class citizens provides a reliable connection between the well-separated formal model and
the implementation; it enables us to use visual comprehensible formal models in a practical and effective
way, and it opens new possibilities of using formal methods in application development and business process
modeling.

INDEX TERMS State machine, web application, REST, MVC, multi-tier architecture, CQS, CQRS, ORM,
SQL.

I. INTRODUCTION
How to build amodel layer of a web application?Modernweb
applications are usually built using an MVC framework [1]
(or similar, e.g., MVP). While the roles and responsibilities
of the view and the controller are well established, the exact
scope of the model remains somewhat vague. The remaining
question is where to draw a line between the model and the
controller.

A multi-tier (n-tier) architectures extend the MVC
approach by inserting a business logic layer between the
model and the controller (and sometimes a few more layers
through the application). The business layer allows us to
separate a low-level data access layer, a high-level business
logic, and a presentation/application logic (the controller, and
the view). Therefore, the rather complicated description of the
behavior of model entities will not mix with SQL queries on
the one end nor with a user interface and an API logic on the
other end.

A command-query separation (CQS) pattern [2] provides
another approach. Instead of adding an extra layer, it sepa-
rates the command and the query execution paths which lead
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orthogonally through the layers. One path to query the data
and retrieve the response, another to execute commands. Such
a separation reflects the distinct requirements and responsi-
bilities of each path, respecting SOLID principles [3]. The
pleasant detail is that the CQS pattern is not in conflict with
the multi-tier architecture or with the MVC pattern. In fact,
these patterns fit together rather well as we will show later.

A common issue of the model and business logic is insuf-
ficient encapsulation. The multi-tier architecture expects that
any tier communicates only with a layer directly above or
below. Unfortunately, deeper layers often leak through into
higher layers. For example, ORM (object-relationalmapping)
frameworks operate at the low-level data access tier and
provide data objects which are tracked for modifications. The
ORM framework then forwards these modifications directly
into a database. If such an object gets passed into the presenta-
tion layer, the modifications may entirely bypass the business
logic layer. Proper decoupling of the layers is difficult to do
and easy to break; the price is high maintenance cost.

Another issue of today applications is a lack of formal
models. The likely reason is the initial cost of the related
infrastructure and the consequence of the misused YAGNI
principle (‘‘You Aren’t Gonna Need It’’) [4]: In the begin-
ning, the application is simple, and the formal tool would
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bring too much overhead, and then, when the things get
complicated, it is already too late. However, even a simple
formal model gives us an explicit idea of how the application
behaves, especially when security is our concern (regarding
both reliability and access control). Web applications are
typically built on top of two formal concepts: the relational
algebra on which SQL databases stand, and the rather trivial
REST & CRUD to define universal HTTP API. Unfortu-
nately, the business logic is out of the scope of both of these
formal concepts.

Many information systems already use the concept of
‘‘state’’ to manage workflows of their entities. Typical exam-
ples are bug tracking systems (open/close issue) and order
management in e-shops (new/confirmed/delivered order).
Many of these systems already use explicit state machines
(finite automata) to visualize andmanage the states. However,
the scope of such a model usually dwells within the single
entity with little to no connection to the rest of the application.
Often a developer implements such a state machine using the
formal model only as a specification with no permanent link
between themodel and the implementation. Such an approach
is error-prone and requires additional workwhen updating the
original model.

The use of a formal model is usually supported by theoret-
ical arguments, like to provide proofs of certain aspects of the
software, or to allow optimizations based on the model. With
no doubt, such features are important. However, there is also
another question to answer: Can we use the formal models to
aid the software development itself?

This paper presents an architectural pattern based on
Smalldb state machines [5], which we applied in the further
proposed Smalldb framework. The core idea is to represent
every entity in the model layer using a Smalldb state machine,
a persistent nondeterministic finite automaton, which con-
sists of a declarative formal definition, an implementation of
transitions, and persistent data repository. The model layer
then consists of two tiers: a low-level data access tier, and
a high-level business logic encapsulated in Smalldb state
machines – see Fig. 1. The upper tiers of the web application
then read the state of the state machines and invoke their
transitions. The state machines also provide access control
and various additional metadata, for example, user-friendly
icons and labels for generated navigation and menus.

The main reason why Smalldb uses simple state machines
instead of more expressive formal tools, like workflows based
on Petri Nets, is the simplicity and understandability. A non-
technical customer can usually understand a statechart with
only a little explanation. This provides a common graphical
language to programmers and their customers so that they
can discuss the business logic together. Moreover, the state
machines are conceptually very close to REST [6], and it is
easy to create a REST API for a state machine.

II. REST API FOR A STATE MACHINE
Before we get to explore the architecture of Smalldb frame-
work, let us take a better look at the REST resource [6] and its

FIGURE 1. Application architecture with Smalldb.

behavior. In short, a REST resource provides a representation
of an application entity. A globally unique URI identifies
it, and a client manipulates it typically via HTTP requests
using a predefined set of HTTPmethods. The communication
with the resource is meant to be stateless (usually with an
exception on authentication), so that the communication is
made of simple request-response cycles.

The HTTP/1.1 standard defines the following methods:
Options, Get, Head, Post, Put, Delete, Trace, and Connect.
Of these methods, only the methods Post, Put, and Delete
are designed to modify a resource on a web server. A life
cycle of the resource starts with its creation, usually via a
Post request, then the resource exists and can be modified
using Put requests. And finally, it can be deleted with a Delete
request. We can represent such a life cycle as a state machine
where the HTTPmethods are transitions, and the resource has
two states – ‘‘exists’’ and ‘‘not exists’’ – see Fig. 2. (The both
black dots in Smalldb notation represent the ‘‘Not Exists’’

FIGURE 2. State diagram of a generic REST resource in two notations and
mapping of their transitions to HTTP methods.
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state, while in the UML notation the black dot only points to
the initial state; the Section V will provide the details.) As we
can see, the REST resources and state machines are closely
related technologies.

Now, let us take the state machine a step further. Regardless
of the HTTP methods, we can generalize the resource as a
generic state machine and use as many states and transitions
as desired (and practical). To do so, we need to change API so
that it is possible to invoke any transition, not only those avail-
able via standardized HTTP methods. Nevertheless, an API
for a generic state machine requires two operations: one to
read its state, and another to invoke its transition. The suitable
candidates are the HTTP methods Get and Post, respectively,
as HTML forms use them for the very same purpose. More-
over, this way, we do not need to implement a specialized
client. However, we need to specify which transition of the
state machine the HTTP Post method should invoke. One
possibility is to add the transition name as a parameter to
the request, and another is to suffix URI with the transition
name – RFC 3986 defines exclamation mark as an unused
delimiter in URI which seems to fit this purpose. Having
a URI assigned to each transition of each state machine
(a REST resource) is useful as it allows us to query metadata
about the transition, or anHTML form to invoke the transition
by a subsequent HTTP Post request.

III. ARCHITECTURAL AND MODEL CONSTRAINTS
REST [6] provides us with a reasonable and well-tested
set of architectural constraints which includes client-server
architecture, stateless communication, layered architecture,
and uniform interface with universal resource identifiers.
Our goal is to extend the REST architecture by introducing
state machines as a formal model of the business logic tier.
To do so, we shall meet the following architectural and model
constraints while preserving all RESTful properties of the
application, so-called Smalldb Pattern:

A. DECLARATIVE FORMAL MODEL
If we wish to validate the behavior of the application, we need
a useful description of the behavior. The source code is
difficult to analyze (e.g., halting problem); therefore, a less
expressive model is required. Such a model must be exe-
cutable (in a sense it can be directly interpreted by a com-
puter) so that programmers have no opportunity to introduce
bugs during manual implementation. However, the model
does not have to address all the details, and thus, it can
stay simple, practical, and understandable. Smalldb state
machines (and finite automata in general) provide such a
formal model. A generic REST resource can be considered
as a state machine of a fixed predefined structure.

B. ENCAPSULATED INTERFACE
The formal model defines not only the behavior of the entities
but also their interface, and this interface should be the only
API to access and manipulate the data. In our case, the state
machine provides information about its state (name of the

state and a persistent representation, e.g., a value object) and
allows us to invoke a transition (to call a method). Addition-
ally, it may provide us with various metadata (along with a
reflection API). That’s all. Nothing else matters nor should
be visible to the higher tiers of the application; no data should
be accessible nor manipulated any other way than via the
interface of the business logic provided by the formal model,
i.e., the Smalldb state machines.

C. STATE MACHINE SPACE
Each state machine should have a unique identifier. Such an
identifier allows us to refer to a given state machine, and also,
it allows us to map it to a unique URI of the corresponding
REST resource. Therefore, all instances of state machines
form a space which we can map to a space of URI. This
allows us to build a generic API to browse and search the
state machine space by various constraints (e.g., list e-shop
products of desired parameters). Note the state machine space
may be theoretically infinite; practically limited only by the
range of data types used for the unique identifier and the
available storage space.

D. PERSISTENT STATE STORAGE
Each state machine represents a persistent entity independent
of the application run-time, typically a record stored in a
database. Modifications of the state (updates of the records)
should be done directly in the persistent storage without
unnecessary caching or delays. This provides a single syn-
chronization point (the database) when the application runs
in many instances.

E. THE INITIAL ‘‘NOT EXISTS’’ STATE
Every state machine has the same one initial state – the
‘‘Not Exists’’ state. There are two reasons for this state: First,
the ‘‘Not Exists’’ state introduces the concept of existence,
instances, and constructors/destructors into the realm of finite
automata. Second, the ‘‘Not Exists’’ state allows us to store
the possibly infinite state machine space in a finite (and
preferably small) database because there is no need to store
the state machines in such a state.

F. ADDRESSABLE TRANSITIONS
Each transition of each state machine should have a unique
identifier. Such an identifier should be composed of the ID
of the state machine (a primary key) and the name of the
transition. Then we can assign a URI to each transition and
invoke it with an HTTP Post request or read the transition
metadata (or an HTML Form) using an HTTP Get request.
The combination of the state machine space and the address-
able transitions allows us to build a RESTful unified interface
(an HTTP API) to read and manipulate the state machines, as
well as retrieve metadata from the formal model.

G. EXECUTABLE TRANSITIONS
The state machines are active during the transitions only;
the states represent merely a passive waiting for the next

VOLUME 7, 2019 144605



J. Kufner, R. Mařík: Restful State Machines and SQL Database

FIGURE 3. The three parts of Smalldb state machine.

transition. The transitions are expected to modify the per-
sistent state and perform desired side effects. The transitions
may accept parameters (like ordinary method calls), but oth-
erwise, the invocation of a transition should be stateless, i.e.,
independent of the application state.

H. THE ABSTRACT ENTITY WITH A BORROWED RUN-TIME
The state machines are abstract entities which all exist since
a developer defines the state machine space. Since then, all
state machines passively wait in the initial ‘‘Not Exists’’ state
with no run-time assigned to them. When the application
invokes a transition, it also provides its run-time to the state
machine so it can perform the transition. Once the transition is
complete, the state machine returns the run-time to the appli-
cation and passively waits for the next transition with its state
stored in the persistent state storage. Because of this concept,
the application does not instantiate the state machine; instead,
the application communicates with the state machine via a
reference object which provides the machine-related part of
the encapsulated interface. This approach plays well with tra-
ditional SQL databases and does not impose additional limits
on the horizontal scaling of the application as it decouples
the model entities from the application run-time. Moreover,
we can formally reason about the entity behavior without the
need for a run-time.

I. CONCLUSION
These constraints give us a hint on how to enhance REST
resources with the formal model. Note that these constraints
are not in conflict with the REST constraints; therefore,

the application should maintain all the RESTful proper-
ties. However, there is a conceptual shift in modifying the
resources. The REST stands on representations, where the
application translates a request for a representation modifi-
cation into an action. With the state machines, the HTTP
Post requests only invoke the transitions of the state machines
explicitly, similarly to remote procedure calls. In this case,
the representations provide the state information only, which
can be retrieved by HTTP Get requests.

IV. THE IDEA
The constraints in the previous section gave us a rough idea
of how to design the business logic tier of a web application
andwhat we expect from the formalmodel which the business
logic is supposed to use. In the following sections, we present
the architecture of Smalldb framework, which combines the
REST approach with the formal model based on nondeter-
ministic finite automata.

The core idea of the Smalldb state machines is based on the
three separated components – see Fig. 3: a state machine def-
inition, a transitions implementation, and a repository. These
components are relatively independent; however, a certain
consistency is required to form a Smalldb state machine suc-
cessfully. The state machine definition connects the circles
and the arrows, the transition implementation implements
the arrows, and the repository provides the circles. Such a
decoupling of the components allows us to reuse the same
definition for multiple state machines, e.g., the framework
offers a prefabricated definition of CRUD state machine and
allows the components to use different tools to fulfill their
purpose.
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The fourth component in Fig. 3 is a reference object, which
has access to the three components and points to a particular
state machine identified by a primary key (ID) in the reposi-
tory (the ID number three in this case). The application uses
the reference object to communicate with the state machine.
The application does not instantiate the state machine itself
like a traditional object in object-oriented programming as the
state machine is an abstract construct mostly independent of
the application run-time. Instead, the application instantiates
only a reference object which provides an interface to invoke
transitions and read the state of the state machine via the
Smalldb framework.

A. THE STATE MACHINE DEFINITION
The state machine definition is a declarative formal definition
of the state machine, typically in the form of a statechart or
a state diagram. A programmer may draw such a statechart
using a visual editor and store it as a GraphML file, which
Smalldb framework can load directly, or he can enumerate
the states and transitions in a state machine configuration
file. Also, it is possible to combine these approaches – draw
the statechart and then specify additional metadata in the
configuration file. An additional exciting option is to generate
the state diagram from BPMN process diagrams, where the
generated state machine implements one of the participants
(the application) in the process.

Due to the declarative nature of the statemachine definition
and use of the relatively simple model, it is possible to reason
about the behavior of the state machine without running
the application. For example, we can model users of the
application as state machines too and then simulate the entire
business process as a network of interacting state machines
long before we implement the application. This way, we can
formally verify the correctness of the application specifica-
tion during the early design phase of the development.

The state machine definition is not only about states and
transitions, but it also can provide various metadata. One of
the highly desired extensions is access control: With each
transition, we can specify who can invoke the transition. If a
user is not allowed to invoke a transition, then the Smalldb
state machine will reject the request. This provides us with
simple and reliable access control, which we can formally
verify along with the rest of the state machine definition.

The purpose of the state machine definition is to be the
Single Source of the Truth (SSOT or SPOT; a variant of DRY
– Don’t Repeat Yourself) [7]. The transitions implementation
asks the state machine definition, whether it shall allow the
user to invoke a given transition and whether it is a valid
transition at all. Moreover, the definition may enumerate
available transitions of an entity, so that a user interface can
show a menu, for example.

B. THE TRANSITIONS IMPLEMENTATION
The transition implementation is expected to update the state
machine state in the repository, and to perform some desired
actions (side effects). Unlike the traditional formal concept of

the finite automata where transitions are considered instant,
the arrows of the Smalldb state machine represent pieces of
code, the transitions implementation, which moves the state
machine from one state to the next. Still, the fundamental
feature of the transitions is atomicity, although, its execution
takes some time.

It is not essential how precisely a transition is implemented
as long as it begins and ends in the defined states. Most
implementation details are left hidden behind a few simple
arrows. Therefore, to maintain the specification accurate and
useful, the omitted details must be of known properties and
well contained within explicit boundaries; the features which
do not contribute to the model behavior are stripped away.
Thus, the transition between states defines a gap which is then
treated as a specification for a programmer who implements
the transition. The definition with well-defined gaps, a sparse
approach to the formal specification, is the key trick of the
Smalldb framework.

Smalldb state machines are nondeterministic finite
automata. The nondeterminism represents multiple possible
outcomes of the invoked transition. In some cases, the state
machine may not have the prior knowledge necessary to
choose the correct arrow. In other cases, the behavior is just
too complicated to specify, and such a specification would not
be practical. Either way, it always ends in one of the allowed
states (and if not, the state machine detects an implementation
error).

The purpose of the transitions implementation is to infor-
mally but practically fill the formally defined gaps in the state
machine definition. The two components form a complemen-
tary pair; the one allows us to reason on the overall behavior,
the other provides the unpleasant details in a properly con-
tained package.

C. THE REPOSITORY
The repository provides persistence. It provides a uniquely
identified persistent representation for each state machine.
Such a representation is typically obtained from a row in
a SQL table, but it can be a file, an LDAP entry, or even
a remote device. There are only two mandatory features of
such a representation: a state machine unique identifier and
a ‘‘state function’’. The unique identifier locates the state
machine within the state machine space, e.g., a primary key
on the SQL table. The ‘‘state function’’ maps the representa-
tion to a state of the state machine without any side effects,
e.g., a SQL expression (usable in select queries) which returns
a state name for each row in the SQL table. The rest consists
of application-specific implementation details.

From the architectural point of view, it is important to real-
ize that the repository spans over two tiers of the application
– the business logic tier and the data access tier. However,
it must respect these tiers; otherwise, the application would
become unmaintainable. The difference between the two tiers
is that the data access tier operates directly with the raw data
in the persistent storage (e.g., rows in the SQL table), while
the upper business logic tier operates with an interpretation
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of the raw data (e.g., hydrates a value object with a SQL
row data). As the Repository pattern [8] (pg. 322) shows,
it is a good idea to shield the application from the underlying
storage using a facade [9].

Concerning the other two components, the transitions
implementation uses the repository to manipulate the persis-
tent representation, and thus the state of the state machine.
The role of the state machine definition is limited to provide
valid values of the state function. The state function serves
as the glue between the state machine definition and the
persistent representation – no matter how complex the rep-
resentation is, the state function converts the representation
into a single scalar value, the state of the state machine.
Moreover, since the state function is the only point of contact,
it decouples the formal model from the representation.

The purpose of the repository is to identify individual state
machines, retrieve their state, and to provide the transitions
implementation with a tool to manipulate the persistent stor-
age and thus the state of the state machine.

V. KEY FEATURES OF SMALLDB STATE MACHINE
The architecture of Smalldb framework stands on the fol-
lowing few specific features of the underlying state machine.
While Smalldb framework assumes the use of nondetermin-
istic finite automata [5], the architecture is not limited to this
kind of automata and can use more sophisticated machines
as long as these specific features are preserved, for example,
hierarchical automata or workflows based on Petri Nets.

The first feature specific to Smalldb is the initial ‘‘Not
Exists’’ state. As stated before, this unified initial state allows
Smalldb to deal with the theoretically infinite state machine
space, because the lack of any other information represents
this state. Since every formal automaton has an initial state,
Smalldb merely defines the ‘‘Not Exists’’ state as the initial
state. In comparison to the generic initial state, the ‘‘Not
Exists’’ state introduces the concept of construction and
destruction of the automata – the transitions from the ‘‘Not
Exists’’ state represent constructors, transitions to the ‘‘Not
Exists’’ state represent destructors.

Section II and Fig. 2 presented a simple state machine
using the two notations – the UML notation (Fig. 2a) and the
Smalldb notation (Fig. 2b). The only difference between the
two notations is in the syntax of the initial and final state.
Since the initial state of every Smalldb state machine is the
‘‘Not Exists’’ state, we used the black dot to directly represent
the initial state instead of using it as a pointer (marker) to the
initial state as it is in UML notation. Likewise, the circled dot
representing a final state got repurposed to denote the ‘‘Not
Exists’’ state. This way, the practical state diagrams, which
are usually small, are more linear and better correspond with
real-world workflows with the start and the end. Therefore,
when the initial and final states are the same (the ‘‘Not
Exists’’ state), we cut the cycle in the diagram to reflect
the logical workflow of the entity. We can see this happen
in Fig. 2 where the UML notation hides the begin and the end
of the life cycle in a loop around the ‘‘Not Exists’’ state, but

the Smalldb notation is clear about the begin and the end of
the business workflow. The use of slightly modified notation
may complicate the use of existing tools and editors; however,
our experience shows that such tools usually do not follow
UML standards strictly (if at all), and provide sufficient level
of customization to deal with the difference.

The second feature is the state function, which maps the
representation in the persistent repository to the state machine
states, usually implemented using a simple SQL expression.
The purpose of this function is to connect the arbitrary
representation in the persistent storage to the formal state
machine definition where a state is merely a named circle.
The state function is a tool that maps the reality to virtually
any formal construct which deals with states. Additionally,
the definition of the state function also defines instances of
the state machine as the domain of the state function is a
subset of state machine space.

The concept of nondeterminism is an optional feature of the
formal model; however, if used, its interpretation needs to be
consistent with the interpretation of Smalldb state machine.
In Smalldb, the nondeterministic transition represents insuf-
ficient knowledge at the moment of transition invocation – an
unknown external influence, or behavior too complicated to
model; and thus the transition has multiple possible outcomes
for the same (incomplete) input. In other words, multiple
arrows with the same label represent a single transition with
multiple results; we invoke such a transition like any other,
and then we wait what happens (within the constraints).

If we could predict the unknown external influence,
we could replace the nondeterminism with guards (signals
from other automata) and make the state machine determinis-
tic. While the real world1 prevents us from doing so, we can
apply such an approach in simulations, and formally verify
the business process. This introduces an interesting concept
where a single state machine is non-deterministic, but a group
of interacting (non-deterministic) state machines may form a
deterministic model.

As we can see, the architecture of Smalldb framework
imposes only a few easily satisfiable requirements on the
formal model. Therefore, we can choose the best fitting
automaton for each underlying state machine, or extend such
automata with application-specific features without jeopar-
dizing the overall architecture.

VI. ARCHITECTURE OF SMALLDB FRAMEWORK
Smalldb framework provides a practical working implemen-
tation of the idea presented in the previous sections. The core
component of the framework is the Smalldb state machine,
which we will examine in this section.

Fig. 4 presents the structure of the Smalldb state machine
and the nearby components – the application & presentation
logic above the state machine, and the three underlying stor-
ages below the state machine. The schematics still preserves

1Assuming the real world is a system responding to unmodelled external
events.
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FIGURE 4. Architecture of a web application with Smalldb framework.

the separation into the three parts from Fig. 3, but since
the underlying infrastructure under each of the three parts is
specific to each part, we expanded the boundaries of the parts
to contain lower tiers in addition to the business logic.

A. COMPONENTS SUMMARY
The following sections will describe in detail how the com-
ponents from Fig. 4 work together, but before that, let us take
a brief look at the individual components and their respective
roles.

• Reference Object is a pointer pointing to the desired
state machine. It provides API to read the state machine
state, invoke its transitions, and inspect state machine
definition.

• Collection is a collection of the Reference objects. It
may provide some optimizations when retrieving state
machines related to each state machine in the collection
(e.g., retrieve all authors of all blog posts on a home page
with a single SQL query).

• Definition Loader loads JSON files, GraphML state-
charts, and BPMN business process diagrams. Then it
combines these resources and infers the State Machine

Definition. This processing may happen during compi-
lation or during run-time initialization.

• State Machine Definition is a constant data structure
describing the state machine; it is a run-time represen-
tation of the formal model.

• Decorator validates transition invocations against the
State Machine Definition and rejects invalid or denied
requests. It also verifies that the new state is one of the
expected states once the transition is completed.

• Transitions Implementation is an executable code which
implements the state machine transition. It manipulates
the data within the Persistent Storage via Data Access
Object to update the state machine state.

• Repository Facade translates raw data from the Per-
sistent Storage into business logic entities in the form
of Reference Objects or Collections of the Reference
Objects. It provides an API to browse state machine
space (e.g., faceted search [10]) and to retrieve refer-
ences to state machines of specific IDs.

• Data Access Object provides tools to read and manip-
ulate the data within the Persistent Storage. It may also
provide a query builder to search the state machine space
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effectively. Alternatively, an ORM framework may be
used instead (see Sec. VII).

B. LOADING THE DEFINITIONS
Before the first interaction with a Smalldb state machine,
the application must become aware of the state machine.
The framework loads configuration of each Smalldb state
machine and passes it to the Definition Loader – see Fig. 4,
bottom left. The configuration may be provided as a com-
bination of various forms – from source code annotations,
configuration files, GraphML statecharts, to BPMN busi-
ness process diagrams. Some forms may be usable as they
are; others may require advanced analysis and inferring of
the state machine [11]. The Definition Loader may process
the configuration during application compilation, or it may
do so during run-time startup and cache the result (e.g.,
within a compiled dependency injection container). In the
end, the Definition Loader compiles each configuration into
a state machine definition.

Once the definition is loaded, the State Machine Definition
component provides it to the rest of the application. It answers
questions like ‘‘Is this transition allowed in the given state?’’,
or ‘‘Which transitions are available for this state machine?’’.
At this point, the state machine definition is a static data
structure with a library of helper methods. We would call
it a reflection API in the object-oriented world. Note the
definition is a data structure, and this whole process does
not involve any generated code which a programmer should
modify; the Definition Loader may generate a simple source
code as an effective way of caching the static data structure
representing the state machine definitions.

The loaded definitions are merely a beginning. There are
two more components, the transitions implementation and
the repository, which each must be initialized separately
(if used2), but these three components need to be linked
together to cooperate properly.

C. FRAMEWORK INITIALIZATION
Traditional ORM frameworks, for example, Doctrine [12],
typically start their initialization from a repository class.
Such an entry point requires an entity manager (or a sim-
ilar component) which bootstraps the whole framework,
while the repository registers its entity type in the entity
manager.

Smalldb Framework, on the other hand, stands on three
relatively independent components – the state machine defi-
nition, the transitions implementation, and the repository. The
initialization of each component using a traditional depen-
dency injection (DI) container is straightforward, and it is
likely to be automatic; however, linking the correct three
components together to form a single state machine is some-
thing with which the DI containers have difficulty to deal,

2For example, there is no need to initialize the Transitions Implemen-
tation when we wish only to provide the information about the state of a
state machine without invoking a transition. Similarly, we may not need to
initialize the Repository until we need to load the state of a state machine.

at least if we try to utilize autowiring and other features which
configure components automatically.

A typical DI container [13] stands on a configuration
which describes how to instantiate registered services, i.e.,
which constructors or factories to call, and which other ser-
vices each of them requires, e.g., as constructor arguments.
Such a configuration forms a service dependency graph.
When a service is requested from the DI container, the con-
tainer recursively walks through the dependency graph and
instantiates the requested service as well as the services on
which it depends, effectively constructing a spanning tree
of the service dependency graph. There are two ways to
specify the dependencies of the services. First is to name
each service and specify the name of each dependency of
each service, which requires a tedious amount of manual
work. The second approach, the autowiring, is to use the
type system of the used language to tell us which services
match with which constructor or method arguments so that
the DI container can guess the dependencies automatically.
Unfortunately, this approach is not viable when there are mul-
tiple services of the same type, e.g., multiple definitions of
Smalldb state machines; such dependencies must be defined
explicitly.

The consequence of the Smalldb framework architecture
is that API entry point, the repository, does not match
with an initialization entry point. For the DI container, this
means there is no obvious spanning tree in the compo-
nent dependency graph because we do not have a single
root from which to start; in fact, we have three or four
roots. The Smalldb framework overcomes this difficulty by
extending state machine definitions with a name of related
transitions implementation and repository. During the DI
container compilation, the Smalldb framework collects the
state machine definitions and generates lightweight provider
objects, which each carry a quadruplet identifying the linked
three components and a reference class. The provider objects
are then registered in the DI container to establish the
explicit connections, and to provide lazy loading of the linked
components.

It seems that a state machine definition is a suitable place
where to identify the other components related to the given
state machine because it is the only component available at
compile-time and thus we can use it to generate the configu-
ration of the DI container.

D. APPLICATION INTERFACE
The Application & Presentation Logic communicates with
the Smalldb state machine using Reference Objects (Fig. 4,
top). Each reference object points to its state machine, pro-
vides the state of the state machine, and allows its user to
invoke a transition of the machine. Additionally, the reference
object mediates access to the relevant state machine defini-
tion. The reference object alone does nothing but forwards
the requests to the responsible components, though.

The Collection of the reference objects (Fig. 4, top
right) serves as a representation of a typical answer of the
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Repository Facade when browsing the state machine space.
The collection may be a simple list, but it may provide sig-
nificant optimizations when retrieving state machines related
to each state machine in the collection (e.g., retrieve all
authors of all blog posts on a home page with a single SQL
query).

E. SMALLDB STATE MACHINE WORKFLOW
The processing begins with the Application Logic receiving
an HTTP request. Using the data within the request (e.g.,
an ID, or another unique identifier) the Application Logic
obtains a reference object from the Repository Facade – see
the arrows with the grey outline in Fig. 4. Such a Reference
Object points to the desired Smalldb statemachine and allows
the application to retrieve the state of the machine, and the
persistent representation from the Persistent Storage (e.g.,
the data stored in the SQL database).

If the HTTP request is only to retrieve the data, the work-
flow can end here, and the Presentation Logic replies with an
HTTP response.

When the application logic needs to manipulate the state
machine state, it invokes a transition using the Refer-
ence Object. The Reference Object passes the invocation
to the Decorator inside the state machine. The Decorator
decides whether the transition is valid given the state of
the state machine and other facts, e.g., user’s access rights.
If the transition invocation is valid, the Decorator calls
the corresponding Transition Implementation. The Transition
Implementation uses the Data Access Object to manipulate
the representation stored in the persistent storage. As a con-
sequence, the state of the state machine is updated, and the
cycle closes.

As we can see, the workflow forms a cycle where the only
branching is whether the application logic retrieves a single
reference or a collection of the references. This fact suggests
that the architecture is as simple as possible.

F. COMMAND–QUERY SEPARATION
The general idea of a Command-Query Separation pat-
tern (CQS) [2], [14] and a closely related Command-Query
Responsibility Segregation pattern (CQRS) [15] is to strictly
separate components which query data and which modify the
data – see Fig. 5. The reason for such a separation lays in dis-
tinct responsibilities and requirements of such components so
that they respect the SOLID principles [3] better. Both CQS
and CQRS is mostly known from microservice applications,
but the concept itself is much older [2].

The benefits of CQS pattern origin in the elegance with
which it works in distributed environments. Because the com-
mands are separate units which do not return data; they can
either perform the actions directly or enqueue events for later
processing. It is also possible to use different models to read
and write the data.

The query component of the CQS pattern is closely related
to the Repository pattern [8] (pg. 322), where the repository
provides an interface to query the underlying data store. The

FIGURE 5. The core concept of CQS and CQRS.

repository encapsulates the query logic and, e.g., keeps all
SQL queries in one place so that they are easier to man-
age. It also can use various caching techniques to scale the
application for large loads. The Smalldb architecture spec-
ifies only the repository facade with no details because the
underlying mechanism to query the database may vary.When
using an SQL database, the repository facade is likely to
utilize a query builder, and then it only wraps the result into
the Reference objects. However, we may use a fundamentally
different data store for some of the entities in the application
(e.g., an aggregate root of event sourcing [16] implementa-
tion, or sensors connected to a local bus) and then the Smalldb
state machine provides a unifying API.

The command component corresponds to the transitions
implementation component in the Smalldb architecture.
It executes the actions required to transition the state machine
from one state to another. To do so, it requires various tools,
e.g., to send an e-mail notification. Also, it must ensure data
consistency and respect access control rules. Its API focuses
on individual transitions (commands) rather than queries and
collections. While the CQS pattern does not specify details
on how to perform the commands, the Smalldb architec-
ture defines the decorator to validate the requested actions
against the formal model, the state machine definition, and
ensure that such a transition is valid and allowed. Similarly
to the repository facade, the decorator provides a unifying
API to the underlying mechanism which performs the transi-
tions. When using an SQL database, the underlying transition
implementation will likely execute some update and insert
SQL queries; moreover, it may also emit events or send
commands to connected devices.

As we can see, such a separation makes each component
easier to develop and maintain. While the overall architec-
ture may look more complicated, the individual components
become simpler and more manageable; thus, the application
development is easier (and cheaper).

G. ACCESS CONTROL
When the application logic invokes a transition, the request
always goes through theDecorator (see Fig. 4) which decides
whether the request is valid according to the state machine
definition and if so, the Decorator executes the Transition
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Implementation. Since the Decorator processes all transition
invocations, it is the perfect place where to implement an
access control mechanism.

The access control mechanism requires typically two more
things aside from the request: access control rules and secu-
rity context.

The security context typically represents a currently
logged-in user and his roles. The DI container of the appli-
cation injects the context into the Decorator. The particular
form of the context depends on the framework used in the
rest of the application.

The access control rules are the interesting part. The state
machine definition is the single source of the truth, and as
such component, it provides not only the states and transitions
but also various metadata relevant to these, including the
access control rules. Therefore, each transition is labeled with
a rule saying who and under which circumstances is allowed
to invoke the transition.

Presence of the access control rules in the formal model
allows us to visualize and reason about who can do what and
when. State reachability is usually a very simple problem, but
only until we apply access control rules and thus disallow
some transitions. Then the state reachability algorithm can
verify that the given group of users with a specific combina-
tion of permissions can reach the given goal.

H. CONSISTENCY
The presented architecture of Smalldb framework builds on
three relatively separate components: the state machine def-
inition, the transitions implementation, and the repository.
For the proper function of the whole framework and the
application above, wemust ensure the consistency of the three
components. As stated before, the state machine definition
connects the circles and the arrows, the transition implemen-
tation implements the arrows, and the repository provides the
circles. It all must fit together.

The question is how to ensure consistency and who is
responsible. The easy answer is to leave it up to the program-
mer. While we do not have a better answer (yet), we can
at least provide a tool to verify some of the consistency
constraints automatically.

At the compile time, when the Smalldb framework loads
the state machine definition, we can trivially verify that an
implementation exists for each defined transition, i.e., that
each arrow is backed by executable code.

Static analysis of the state function may tell us whether
every possible representation in the repository maps to a valid
state machine state and vice versa, i.e., all the used circles
are defined properly. The static analysis may be difficult to
automate in general; however, most practical applications
suffice with a simple decision tree applied to the represen-
tation space, which is easy to analyze manually. At this point,
we want to verify that the state function returns only the valid
states defined within the respective state machine, and the
state function returns such a valid state for every possible (not
necessarily valid) representation.

Verification of the transitions implementations is feasi-
ble only in run-time as the implementation is usually a
piece of code written in a Turing-complete language. The
Smalldb framework retrieves the new state machine state
(using the state function) after each transition and validates
it against the state machine definition. In case the new
state is not allowed by the definition, the Smalldb state
machine yields an error. Moreover, if the invalid transi-
tion is limited to the scope of a SQL transaction, it can
be safely rolled back to the previous valid state. This kind
of validation is useful during development and testing of
the application but does not enforce the correctness of the
application.

While the separate formal definition of the state machine
requires the developer to maintain consistency, it makes it
much easier to collect the specification from the customer.
Then, the rigid connection with the implementation ensures
that the specification (the model), the implementation, and
also documentation always stay up-to-date.

VII. ORM: OBJECT–RELATIONAL MAPPING
While many of the web applications today use ORM as their
model layer, the Smalldb state machine builds on top of a data
access object, as presented in Fig. 4. So, is it possible to use
ORM within the Smalldb state machine?

Before we answer this question, let us take a look at
how ORM frameworks work. The first and the most obvious
concept of ORM is to map records in the SQL database
to objects of object-oriented language. However, the core
concept of ORM is the ‘‘Unit of Work’’ [8], [17] (pg. 184).
In short, the ORM framework collects modifications done by
the application as a ‘‘unit of work,’’ and once the application
finishes, the ORM framework applies themodifications to the
SQL database. This allows the ORM framework to aggregate
lots of calls of setter methods of the mapped objects into a
single SQL update query.

The design of Smalldb state machine naturally bounds
modifications of the SQL database into state machine transi-
tions, and reference objects can provide caching, thus replac-
ing the need for the Unit of Work as they both solve the very
similar problems. However, there is no conflict between these
two as long as each unit of work stays enclosedwithin a single
state machine transition and the objects passed outside the
Smalldb state machine are disconnected from their unit of
work to avoid any unexpected behavior when the application
logic processes the objects.

It is essential to realize that ORM frameworks do not
replace the model layer of the application. The ORM is rather
a low-level tool to access a SQL database. In this light, it may
make sense to use an ORM framework in place of the data
access object within Smalldb statemachine. TheORM frame-
work may be useful when dealing with relations and object
hydration (mapping raw SQL records to business-domain
objects).

On the other side, ORM frameworks add much complexity
to the application, which is not always desirable, and many
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FIGURE 6. Example: Booking of a flight and a hotel using Uppaal [19].

developers prefer to use more straightforward and predictable
tools. The Smalldb framework provides a choice as the repos-
itory facade shields the rest of the application from either of
the low-level tool.

VIII. TRANSACTIONAL BEHAVIOR
The theory of finite automata defines a transition as an atomic
operation [18]. A practical implementation of such atomic-
ity is a challenging problem typically solved using locking
mechanisms and transactions, which can be rolled back if
something unexpected happens. Traditional SQL databases
provide us with such mechanisms, and thus we can imple-
ment transitions of our state machines as atomic opera-
tions. The Smalldb state machine alone has no mechanism
to enforce transactional consistency of the transitions, and
it fully relays on a correct implementation of transactions
within the transitions.

Whenwe deal only with entities stored in an SQL database,
we can ensure the transition atomicity by wrapping each state
machine transition into an SQL transaction. A failure during
a state machine transition then rolls back the transaction and
the state machine returns into the previous state. The situation
is the same as with any other database application.

The fun begins when dealingwith external resources which
may become unavailable before the transaction is committed,
for example, when booking a flight and a hotel. In such
situations, the use of a single state machine transition to
allocate multiple resources may be impractical. We may add
an intermediate state in which the state machine will wait for
the allocation of the resources. The state function of Smalldb
state machine (see Sec. V) allows us to asynchronously wait
for multiple resources in a single state – the intermediate state
may have a transition which records successful allocation
of each resource, and when the last resource is allocated,
the transition will advance to the next state instead of return-
ing into the intermediate state.

Additionally, we may want to represent the resource allo-
cation using an additional simple Smalldb state machine,

FIGURE 7. Flight and hotel resources for the example in Fig. 6.

so that we can track which resources we allocated from 3rd-
party services. Then the resource allocation process becomes
a network of interacting state machines, and we can use
a formal tool, e.g., Uppaal [19], to ensure correctness in
such a complicated situation as presented in Fig. 6 and 7
(where ‘‘allocate!’’ represents sending a signal to another
state machine, and ‘‘allocate?’’ represents receiving of such a
signal; failure recovery neglected for simplicity).

IX. CASE STUDY: APPLICATION DEVELOPMENT
The architecture of Smalldb framework is designed to ease
development of web applications, so this section will high-
light some of the interesting aspects of the use of the Smalldb
framework and, more importantly, how it affects the develop-
ment cycle of a web application.

The example application is an information system for a
school to help it with organizing its training courses. The
school lists the courses, trainees may enroll, or their employ-
ers may enroll them. The companies and individuals have
different requirements on how to process payments. Addi-
tionally, some courses are finished with an exam so that
successful participants earn a certificate.

While we do not wish to discuss particular details and
complications of the business processes that this information
system supports, we would like to provide a glimpse of
the overall complexity of the application and its entities –
it started with 18 state machines of which eight are core
machines we designed on a single sheet, see Fig. 8. As
we can see, many entities involve some nontrivial behavior
which needs to be specified, modeled, implemented, and
tested. To do so, the precise description of their behav-
ior needs to be passed among various groups of peo-
ple – from the training facility employees demanding the
information system, to software architects, developers, and
testers.

A. ANALYSIS
The initial analysis showed, that while the application is
rather small, the behavior of the core entities is difficult
to comprehend because the application deals with users
with vastly distinct workflows due to their situation and
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FIGURE 8. State diagram sheet preview to present the complexity of the
application.

environment. These workflows required thorough discus-
sions with the customer, and we needed to find common
ground to understand what the users are expected to do.
In particular, some of the users were people attending the
courses and paying themselves in advance, while others were
companies ordering courses for their employees in bulk,
some of them even billed monthly with pre-approved lim-
its instead of per course basis. The goal was to provide a
unified ordering process which could satisfy the needs of
all customers without unnecessary complications to either
side.

Such a complex workflow requires one thing more than
anything – thorough communication with the customer (or
users) to get the process right. The state diagram sheet pre-
sented in Fig. 8 proved invaluable during the discussions
over the workflows because it provided a representation of
the application internals, which was understandable by both
developers and the customer. Even non-technical customer
can, with some basic explanation, understand the concept
of a state diagram and what it represents in respect to the
discussed business process. In fact, our experience showed
that the customer was able to find mistakes in our models
while discussing the diagram sheet.

Such a diagram sheet is not meant for the discussion
only – it already is a part of the implementation because we
shall use it later as part of the state machine definition com-
ponent. Moreover, whenever the definition sheet changes,
the framework automatically compiles it into new state
machine definitions, and thus the implementation instantly
reflects their changes. This way, the state diagram sheet
become a substantial part of the source code.

B. PROTOTYPING
Initial prototyping consisted mostly of manual walkthroughs
through the scenarios, carefully interpreting the state dia-
grams and inspecting what user can and will do at a given
step. Once the workflows took shape, early prototypes of the
user interface helped to clarify details. Also, because every
transition of a state machine requires some user interface to
invoke it, we knew that the designed user interface covers
all the use cases. The early prototyping allowed by the state
diagram sheet provided us with a useful model on which we
could build the application. Moreover, we avoided significant
redesigns in later stages of the development because we could
(and we did) perform significant changes in the design as our
understanding of the customer’s workflows improved. Note
that at this stage, the implementation did not exist yet, or it
consisted only of user interfaces without any logic behind
them.

To advance from the formal model and drafts to a minimal
working implementation, each entity used in the application
needs to be defined. The basic idea is to utilize the diagram
sheet as much as possible to avoid duplicate efforts in the
design and implementation. Such a definition consists pri-
marily of two things: The first is a link to the state diagram in
the state diagram sheet; in this case, it was an ID of the ele-
ment in the GraphML file of the state diagram sheet created
using yEd editor. The second item that is entered to the def-
inition is the name of an SQL table, where the state machine
stores its data. Remaining parts of the definition include map-
ping database columns to object properties, access control
rules (see Sec. VI-G) and various metadata, e.g., labels and
icons, to automatically render navigation menus and buttons
– these parts are mostly indifferent to the state machine itself.

C. IMPLEMENTATION
Once we have all state machines (entities) defined, we need
to implement their transitions. A state machine with a tran-
sition defined but not implemented is useful for reasoning
(e.g., to enumerate available transitions to generate naviga-
tion menu) but it is not possible to invoke such a transition
(because it would fail). This behavior allows us to define a
complete model, use it in the (partially) working application,
but because of the well-separated transition definition, we can
implement the application one transition at a time. The sepa-
ration also allows developers to work concurrently.

Watching the number of unimplemented transitions also
gives us a good estimate of how much of the project remains.
Unfortunately, each transition takes a different amount of
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time to implement because with such a transition we need
to implement tools (services) it uses and user interface as
well; therefore, this metric is only partially useful for time
estimates but useful nonetheless.

D. CHANGES DURING THE IMPLEMENTATION
A few times during the later stages of the development,
we had to rearrange already implemented transitions while
adding a new state because the workflow got more compli-
cated than expected. Most of these changes did not require
any changes in the source code because the transition pre-
conditions and postconditions remained unchanged, and thus,
the only required change in such cases was to update the orig-
inal state diagram which is the only place where transitions
are defined and which serves as a formal model, source code,
and documentation.

More substantial changes in the transitions, e.g., where pre-
conditions or postconditions change, required changes in the
transitions implementations to preserve consistency between
the definition and implementation (see Sec. VI-H). However,
such changes were limited to the respective methods imple-
menting the affected transitions, and there is no generated
code which could interfere with the manual changes.

Thanks to the direct use of the state diagram in run-time
and the limited scope of each transition implementation,
we successfully avoided the duplicate effort when updating
the business logic.

X. FUTURE WORK
A. INTERNET OF THINGS AND MICROSERVICES
When connecting various devices together and building the
Internet of Things, we often want to implement a web inter-
face or API to control such devices. Smalldb framework has
been designed with this use case in mind. By replacing the
data access object with an interface to control the device,
we can use Smalldb statemachine to represent the device with
its state and behavior. In this case, we will read the state of the
state machine directly from the device and invoked transitions
will be forwarded as control commands to the device. Such a
device then can be used as any other entity in the application.
For example, an automatically generated administration inter-
face andRESTAPIwill manage such devices in the sameway
as rows in the database without any modification or special
configuration. This can be done without any changes to the
framework itself because both the transitions implementation
and the repository are components provided by an application
programmer.

Similarly, we can migrate from the simple data access
object to microservices, CQRS [14], [15], and Event Sourc-
ing [16]. Because of the separation of transition implemen-
tation (the ‘‘command’’) and repository (the ‘‘query’’) are
already separate in the Smalldb architecture, it should be
simple to implement the CQRS pattern and send events via
a message broker instead of updating an SQL database.

The purpose of Smalldb state machines is to provide a
unified API and describe the behavior of the encapsulated

entities, so that other components, services, or even humans
can meaningfully interact with them and reason about their
behavior.

B. FLUENT CALCULUS
Smalldb state machines use names to identify its states and
the state function to map a representation from the repository
to one of the state names. Such a mechanism is universal and
should fit most practical scenarios; however, in its generality,
it does not provide uswith any semantic information about the
state. If we wish to reason about the states and properties of
the system in such states, it would be useful to extend the con-
cept of state function with a more advanced formalism; e.g.,
Situation Calculus [20] and Fluent Calculus [21], or Event
Calculus [22].

Fluent Calculus [21] represents states using fluents (pred-
icates). Each state is a composition (a set) of such fluents.
Depending on the valuations of the fluents, we can decide
in which state we are. Therefore, we could define fluents to
describe various aspects of the representation from the repos-
itory, and then use such fluents to construct the state function
for the Smalldb framework. Such an approach would enable
the use of Fluent Calculus to reason about the states and the
identification of operations needed to transition between two
given states. Since Fluent Calculus is used in planning [23]
(robotics; including temporal planning [24]), and automated
web service orchestration [25], we could gain access to many
advanced formal tools while developing web applications.

C. TOWARDS FORMAL PROOFS AND AUTOMATED
PLANNING IN WEB APPLICATIONS
At the highest level, we should be able to verify the correct-
ness of the model in the form of state diagrams or business
process diagrams [11] using simulations and various model
checking techniques verifying networks of interacting finite
automata [19], where some of the automata represent the
users and others represent the application entities.

While the Smalldb framework provides us with the
required infrastructure connecting the high-level model to
low-level code (transition implementation), we still need to
provide a formal bridge between these layers [26]. For exam-
ple, we may utilize the earlier discussed Fluent Calculus
(or a similar formal tool) to enhance the basic universal
infrastructure with a powerful formal tool, so that we can
model and reason about various aspects of the underlying
implementation.

The model defines in which state the state machine is at
any given moment, the properties of individual transitions
can be specified using differences between such states. Using
the Fluent Calculus, we merely identify which fluents must
change during the transition. Thus, we have a set of fluents
as preconditions of the transition and another set of fluents as
postconditions. Depending on available knowledge and the
used calculus, we may even infer a list of actions which the
transition implementation should perform during the transi-
tion, and potentially utilize an automated planning method.
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Finally, we need to implement the transition. Because of
the use of Fluent Calculus, we can expect to have a much
detailed specification of the transition – not only names of
the surrounding states but also some basic predicates about
the states. All we need to do is to infer the executable code or
verify the existing implementation. In general, the verifica-
tion task is impossible (e.g., because of the halting problem);
however, the transition implementation in a practical appli-
cation should be very simple and static analysis may provide
useful results in the most cases.

The role of Smalldb framework here is to provide the chain
of trust from the implementation to the model and to enable
the use of formal tools along the way.

XI. CONCLUSION
The Smalldb architecture presented in this paper combines
the number of well-established patterns into a single coherent
unit so that we get the best of each pattern. The multi-tier
architecture provides the layered approach to reduce vertical
complexity. The CQS pattern improves horizontal scaling
by separating concerns and responsibilities of the reposi-
tory and the transitions implementations. The architecture
respects REST principles and provides a RESTful API to
interact with other applications. The data access object or
ORM provide effective low-level access to the database.
And finally, the formal model provided by the Smalldb state
machines describes the overall behavior of each entity and
thus the whole application, so that we can reason about it and
prove its correctness in regards to the implemented business
processes.

The rigid connection between the formal model and imple-
mentation ensures that both the model and documentation
always stays up-to-date. Therefore, the maintenance and fur-
ther development of the application becomes much easier.
As demonstrated in the case study3, the practical integration
of the formal model improves the whole development pro-
cess, because the model provides a precise overview of the
application as well as the well-defined scope of individual
transitions which provides developers with a better specifica-
tion of their tasks.

The proper encapsulation of the Smalldb state machine
enables us to enforce access control from a single place, and
to build a universal API for each entity in the application.
Moreover, the access control can be included in the formal
model so that we can reason about who can dowhat andwhen.

The visual nature of the state machines (and business
processes) provides a common language between customers,
architects, and developers – the easier communication results
in the better specification and thus it leads to the cheaper
development process.

The Smalldb architecture is designed for better developer
experience and provides tools to improve the development
process. It enables effective and practical use of formal mod-

3The Smalldb framework source code and documentation available from
https://smalldb.org/.

els without the undesired overhead and, hopefully, it is a
further step towards full formalization and provability of web
applications.
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