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ABSTRACT The state of a state machine is a path between two actions; however, it is the rest of the world
who walks the path. The development of a web application, especially of an information system, starts with
use cases, i.e., model scenarios of how users interact with the application and its entities. The goal of this
paper is to turn the use cases into a useful specification and automatically convert them into a model layer
of a web application, in our case using finite automata. Business Process Model and Notation (BPMN)
provides a graphical syntax to capture the use cases, which is based on the theoretical background of Petri
Nets. However, because BPMN does not capture the state of the modeled entities, it is impractical to use it
as a specification of a persistent storage and model layers of the web application. To overcome this problem,
we propose a new STS algorithm to infer a finite automaton that implements a chosen participant in a BPMN
diagram that represents a given entity of the web application.

INDEX TERMS State machine, finite automata, state diagram, BPMN, business process model.

I. INTRODUCTION
A customer and a software architect are sitting at a table.
The customer is describing what she wants and how it should
fit into business processes in her company. The software
architect is trying to figure out what she needs, making many
notes and sketching various diagrams to capture the discussed
use cases, key database features, and other vital details of a
future web application. This is a usual beginning of a software
development process.

During this design phase of software development, many
diagrams are created. Most of them are informal sketches, but
some become a part of the product specification, and a proper
notation, e.g., UML or BPMN, is used. Unfortunately, these
diagrams rarely survive the initial stages of the development,
as they quickly become obsolete and forgotten.

Most of the diagrams are not formally useful because there
is little to no connection between them and programming
languages. Only few diagrams can be interpreted or compiled
into executable code, for example, state charts into finite
automata. Our goal is to introduce a connection between the
use cases (scenarios) in the form of BPMN diagrams and a
Smalldb state machine [1] that implements a participant of
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the BPMN process and provide a partial but automatic imple-
mentation of the modeled entities. We assume that the chosen
participant is a machine, while the other participants are the
users (the humans using the machine). To do so, we had to
change our understanding of a ‘‘state’’ and figure out how to
draw software systems in BPMN diagrams and then cut the
BPMN diagram into pieces. Moreover, we had to realize that,
while BPMN is based on the formalism of Petri Nets, it can
also be seen as a group of interacting finite automata.

The BPMN diagrams contain plenty of data regarding
the modeled software system, even when such a system is
presented as a black box with which users interact. However,
while programmers can retrieve the knowledge hidden across
the diagrams intuitively, we lack a tool to do so automatically.

The result we present in this paper is the STS algorithm
(the acronym is explained in Section IX-E), which inspects
interactions of a chosen participant in a BPMN diagram
(a trivial example of such an interaction is in Fig. 1) and
then generates a state diagram of a Smalldb state machine
that implements the modeled behavior of the participant.
A programmer is then expected to provide a database schema
and fill in some code implementing the state transitions.
Effectively, the algorithm provides him with a skeleton or an
outline with the blank spots to fill.
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FIGURE 1. BPMN diagram (with state annotations) of a user invoking a
state machine transition t .

FIGURE 2. Transition invocation from Fig. 1 in detail.

The implementation of the STS algorithm provides us with
not only a tool but also a better understanding of the BPMN
itself. Modeling interactions with a software system using
BPMNmay be tricky. It is easy to draw a BPMN diagram that
is too complicated or too vague. Therefore, before the algo-
rithm itself, we will present our approach and interpretation
of the BPMN notation [2].

Running the STS algorithm has shown a somewhat unex-
pected side effect. Various assertions and constraints built
into the algorithm make it a valuable tool for performing a
semantic check on the BPMN diagrams. The STS algorithm
can detect conflicts in the BPMNdiagrams as it inspects paths
in the diagram. Additionally, it can detect gaps in the modeled
workflow by producing a disconnected state machine (i.e., it
has unreachable states). This helps us to draw semantically
sound diagrams and reduces development time since the
design mistakes are found early.

II. BPMN
A. THE NOTATION
BPMN 2.0, the business process modeling notation [2],
defines a graphical syntax for describing a business process
using an oriented graph; see Fig. 2. Each participant is repre-
sented by a ‘‘pool’’ (‘‘User’’ and ‘‘State machine’’ in Fig. 2)
with one or more ‘‘lanes’’ where his process is encapsu-
lated. The process of the participant consists of ‘‘events’’
(circles), ‘‘activities’’ (rectangles with rounded corners), and

‘‘gateways’’ (squares; see the center of Fig. VI-B) connected
by ‘‘sequence flows’’ (solid arrows). Communication and
synchronization between participants (resp. their processes)
are implemented using ‘‘message flows’’ (dashed arrows),
which are the only edges crossing boundaries of the pools.
There are a few additional features – ‘‘associations,’’ ‘‘data
objects,’’ ‘‘messages,’’ and ‘‘groups’’ – that are irrelevant
to the STS algorithm, and it quietly ignores them. Finally,
a ‘‘text annotation’’ is a comment node attached to a com-
mented node or a text label within such a node. For a precise
definition, please refer to the BPMN 2.0 specification.

As we will see later, because the algorithm is based on
reachability inspection within the graph, it does not need to
understand all features of the BPMN notation. It inspects
only a few specific features in the diagram while interpreting
the rest as a generic graph only to inspect the reachability.
This approach makes the STS algorithm robust and lets users
utilize all of the features of the BPMN, as the diagrams are
meant to be used as documentation, not only as an input for
the algorithm.

B. PROCESS AND PARTICIPANT
BPMN distinguishes ‘‘participants’’ and ‘‘processes.’’ The
‘‘participant’’ is a real-world entity attending the overall
business process. The ‘‘process’’ is a nested graph contained
within a ‘‘pool.’’ The ‘‘process’’ represents the behavior of the
‘‘participant.’’ In more complicated scenarios, participants
may be arranged hierarchically by splitting the pool into
‘‘lanes.’’

A simple example of a BPMNdiagramwith two interacting
participants is in Fig. 2. Fig. 1 presents a similar diagramwith
one of the participants collapsed becausewe are not interested
in its internals.

The ‘‘process’’ and ‘‘participant’’ terms are often inter-
changed and, in many cases, are incorrectly treated as syn-
onyms. Many texts on the Web simply treat them both as
a single feature. However, because there is a 1:1 relation
between them in a BPMN diagram, this inaccuracy usually
causes no harm; in fact, it can make the text easier to read. For
the needs of the STS algorithm,we assume that the participant
is part of its process, and inmost cases, we do not differentiate
between these two either.

C. WEB APPLICATION IN BPMN
Traditional web applications are based onHTML forms. Each
form, when submitted by a user, invokes an HTTP (POST)
request, which usually changes a state of a server-side
resource, and the resulting HTTP response typically redirects
the user to a page showing the new state of the resource.
Modern web applications hide this request–response cycle
from users, but the situation is the same from the server’s
perspective. As we showed earlier, such a resource can be
modeled using a finite automaton; in our case, we repre-
sent the finite automaton explicitly using a Smalldb state
machine [1]. Then, the state change of the resource is merely
a transition of the state machine.
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In a BPMN diagram presenting the basic use of an HTML
form, see Fig. 2, there will be two participants, namely,
the user utilizing a web browser and the server-side resource
(the state machine). Commonly, we can draw the interaction
of the user with the resource as a single message flow from
the user to the resource, as presented in Fig. 1. This message
flow then represents the entire cycle of an HTTP request and
its response. Such a simplified representation is practical and
usually sufficient.

In detail, (Fig. 2), we may draw the HTTP response sep-
arately, using a returning message flow from the resource to
the user. Such representation is more accurate but too detailed
and tiresome for common use. Therefore, the returning mes-
sage flow is only required when the situation is ambiguous
and usually can be omitted. The intermediate throw event
(e.g., denoted as ‘‘Transition completed’’ in Fig. 2) may be
omitted in any case; the returning message flow then origi-
nates from the preceding task node.

An important detail in Fig. 1 is that a collapsed pool rep-
resents the state machine. In this manner, the diagram can be
drawn with no detailed knowledge of how the resource actu-
ally behaves and with no knowledge regarding state machine
states or transitions. At this point, the state machine is a black
box we want to identify. We know how users will use the state
machine, but we do not know the state machine; however,
as we will see, we have enough data to infer it. In fact,
the primary goal of this paper is the synthesis of such a state
machine from the available data.

D. BPMN, PETRI NETS, AND A GROUP OF FINITE
AUTOMATA
A BPMN diagram forms a graph, which can be converted
to a Petri Net [3], [4]. The conversion rewrites fragments
of a BPMN diagram into places and transitions. However,
this conversion is not lossless due to a conflict between the
simplistic nature of the Petri Net and the verbosity of BPMN
diagrams. Petri Nets have no concept of pools and lanes,
nor do they distinguish between sequence flows and message
flows. To preserve these, we would need to carry various
metadata through the transformation, which is error-prone
and unnecessarily complex [5]. However, such a transforma-
tion provides us with a valuable theoretical tool for interpret-
ing BPMN diagrams and knowing which properties to expect
from the model. The STS algorithm does not use the Petri
Nets; it interprets BPMN diagrams directly, but it is based
on the same theoretical background. The Petri Nets show us
conditions under which a participant in a BPMN diagram can
be transformed into a finite automaton.

If we assume single-threaded participants in a BPMN
diagram, the resulting Petri Net has an intriguing property,
i.e., each lane contains precisely one token (because of the
assumption). A Petri Net of a single token can be trivially
converted into a nondeterministic finite automaton (places
become states). Therefore, we could convert a BPMN dia-
gram into a Petri Net and then replace fragments of the Petri

Net with finite automata, creating a network of interacting
finite automata.

The assumption of the single-threaded processing may
seem limiting, but it applies only to the participant we wish
to implement using a finite automaton because the finite
automaton can be seen as a special case of a Petri Net with a
single token, and other participants may use a more powerful
implementation. Moreover, we are modeling a lifecycle of
an entity, not the execution of the program. From this point
of view, it is better to keep things simple, and practical
limitations are negligible.

The STS algorithm is based on reachability within the
graph assuming single-threaded processing, which is unaf-
fected by the transformation to a Petri Net; therefore, we can
inspect reachability on a BPMN diagram directly and avoid
the difficult conversion to a Petri Net altogether.

III. SMALLDB STATE MACHINE
Smalldb is a framework.1 for implementing the model layer
(i.e., M in MVC) of traditional server-side web applications.
The basic idea of the framework is to use nondeterministic
finite automata called Smalldb state machines [1] to describe
lifecycles of entities within the application. The Smalldb state
machine is an abstract construct that combines a formal state
diagram with a transitions implementation (executable code)
and persistent storage (typically an SQL database) to imple-
ment the desired model layer of the web application. In con-
trast to the usual use of finite automata, where the automata
exists at run-time only, the Smalldb statemachine is persistent
and independent of application run-time. In comparison to
ORM (object-relational mapping), the Smalldb state machine
also encapsulates business logic, which is often implemented
in higher layers of the application, and thus Smalldb is able
to enforce access control at the model level.

For the purposes of this paper, we can interpret the Smalldb
state machine solely as a persistent nondeterministic finite
automaton. However, we need to understand two fundamental
concepts of the Smalldb state machine, namely, the interpre-
tation of nondeterminism and the persistent lifecycle of the
state machine.

The nondeterminism of the Smalldb state machine rep-
resents various possible outcomes of an action (transition)
invoked by a user. Theoretically, this approach is equivalent
to the use of guards on deterministic finite automata, but prac-
tically, the information required to evaluate the guard is not
available at the time of invocation of the transition because
there may be unpredictable external influences or it may just
be too complicated to model. A more accurate formal model
would replace the nondeterminism with a microstep in which
the state machine obtains additional information, and then the
machine deterministically continues to one of the available
next states.

The reason why the Smalldb state machine uses nonde-
terminism to capture nonmodeled external events, to avoid

1See https://smalldb.org/
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complexity and to provide as much convenience as possible
is because the target users are also customers who may dis-
cuss the state charts with software architects. Our experience
shows that a nontechnical customer can understand such state
charts with a short explanation quite well.

The other concept is how the state machine deals with
persistence. The usual procedural use of finite automata is
strictly limited to application run-time. Such an application
instantiates the automaton and loads its state from the persis-
tent storage. After the transitions are invoked and finished,
the application stores the resulting state back in the persistent
storage. The state machine ceases to exist when the appli-
cation run-time terminates, and the state machine state is
undefined until the application starts again.

The Smalldb state machine works the other way
around. The Smalldb state machines exist as abstract
constructs regardless of the application run-time. The
application obtains only a reference object to access the
otherwise-abstract state machine. When the application
invokes a transition, it provides computational power (by exe-
cuting the transition implementation) to update the persistent
storage directly. Because the state is defined as a function of
a representation in the persistent storage, the state of the state
machine is known even when there is no application run-time
active. This concept is the key feature that turns the Smalldb
state machines into a model layer of the application.

For a detailed explanation of these and other concepts,
please refer to our previous paper, ‘‘State Machine Abstrac-
tion Layer’’ [1].

IV. STATE IS A PATH
A state of a state machine is a path between two actions;
however, it is the rest of the world who walks the path.

While this claim may sound philosophical, it reflects the
basic idea of path searching through workflow graphs, which
subgraphs are related to transition activities and activities of
other participants performed during a given state.

Let us start with an example to shed some light on this
claim, which is one of the cornerstones of the STS algorithm.
Imagine a crossroad with traffic lights. A finite automaton
and a timer control the traffic lights.2 The timer provides
input events to the finite automaton, and the finite automaton,
depending on its state, turns green and red lights on and off
in the prescribed order. In one state, there is a red light in one
direction and a green light in another. Then, the automaton
receives an event from the timer and switches to orange lights,
and, with another timer event, to red and green in the other
directions. As we can see, the automaton waits in one state
and then performs an action to switch to another state.

Now let us take a look at the crossroad as a whole. While
the automaton is waiting for the next timer event, cars are
driving through the crossing, the timer is counting time,
and pedestrians are walking around. There is much activity
happening while the automaton is passively waiting in a state.

2Assuming an older model before computers were widely available.

FIGURE 3. A simple issue tracking – invocation of transitions ‘‘create’’
and ‘‘close’’; the state machine presented as a black box.

From the automaton’s point of view, its transitions are
times when something happens, and its states are seen as
passive. For the rest of theworld, the situation is opposite. The
automaton’s state provides data for external processes, and
the processes then generate input events for the automaton.
Therefore, the activities of the external entities form a path
from one automaton’s transition to another, connecting its
output events to its input events.

V. ISOMORPHIC PROCESSES
The second cornerstone of the STS algorithm is the con-
cept of isomorphic processes, which is about realizing that
a user and the used tool must be synchronized to perform
their task successfully: ‘‘When a user uses a tool, the tool is
being used.’’ In a BPMN diagram, the synchronization will
appear as an isomorphism between the user’s and the tool’s
processes (lanes) if we replace paths irrelevant to the tool with
a simple sequence flow.

For example, Fig. 3 presents a user who gets an idea,
creates a note in a To Do Application, and after implementing
the idea, checks the note off. At this point, we know how the
application is going to be used, but we do not know what
the application will actually do. Thus far, the application is
a black box to us. During a software development process,
we would likely have similar diagrams after initial discus-
sions with a customer.

The next step is to identify the black box so that a pro-
grammer can implement it. If we apply the concept of iso-
morphic processes to the diagram in Fig. 3, we can identify
that the issue tracking application needs to create an issue
and then close the created issue, as pictured in Fig. 4. Once
we disregard the two nodes when the user implements the
idea (replace the middle two nodes and the three connecting
sequence flowswith a single sequence flow), because they are
irrelevant to the To Do Application, we can see that the user
and the application processes form the isomorphic subgraphs.

The theoretical background on which this concept stands
originates in Category Theory [6], particularly in the nat-
ural transformations between functors and commutative
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FIGURE 4. Isomorphic processes in detail (compare with Fig. 3).

diagrams [7]. We may see the user’s actions as functors
changing the world from one state to another and the appli-
cation code as functors changing the application state. The
interaction between the user and the application then may
be interpreted as a natural transformation between these two
functors, forming a commutative diagram very similar to
the BPMN diagrams. However, for the sake of clarity (and
sanity), we skip the details.

The question is whether it is possible to apply the con-
cept of isomorphic processes automatically, or do we need
a human programmer?

VI. INTERPRETING BPMN DIAGRAMS
The real challenge when modeling interaction between users
and an application in BPMN is to keep the diagrams com-
prehensive and straightforward while capturing all essential
details. To do so, we identified the four key features occurring
in the BPMN diagrams. The first is a simple interaction
between a user and an application. The other two represent the
control flow of the business process, differing in who decides
what the next step is. The last feature is synchronization (or
notifications) between the users via the application, where an
interaction of one user with the application results in notifi-
cation of another user. While this list may not be complete,
we found it sufficient to cover all of the scenarios we have
had to deal with thus far.

In this section, we present only the core ideas on which the
STS algorithm stands and how the example BPMN diagrams
should be transformed into Smalldb state machines. Without
the STS algorithm, this transformation is done intuitively by
developers, and for now, we shall rely on that intuition. The
formal details are left to be refined later, in Section IX, along
with the complete description of the algorithm.

A. SIMPLE TASK
The basic interaction with an application is a submission of a
request (or a command). In a web application, this act closely

FIGURE 5. The state machine inferred from Fig. 3.

follows HTTP communication; the user, via a web browser,
sends an HTTP request to the application on a web server,
and then the application replies with an HTTP response.
We already introduced this scenario in Section II-C; now let
us take a look at it from the STS algorithm’s perspective.

In BPMN, we can model the request–response interaction
as two message flows between the user and the application,
or more precisely, between the user and an entity within the
application (see Fig. 1). The first message flow, the ‘‘invok-
ing’’ message flow originating in the ‘‘invoking node,’’ repre-
sents the request. The second message flow, the ‘‘returning’’
message flow ending in the ‘‘receiving node,’’ represents the
response.

In simple cases such as this one, where the invoking node
is also a receiving node, we may omit the returning message
flow from the diagram because it is obvious that it should be
there, but it remains a part of the model as an implicit return-
ing message flow. However, the placement of the returning
flow may significantly change the meaning of the diagram,
as we will see later.

Because we are going to implement the entities of the
application as Smalldb state machines, we can assume that
each invoking message flow represents the invocation of a
transition in the given state machine. The returning message
flow then contains information about the new state of the
entity. An implementation of the invoked transition may be
as simple as a single SQL query, or it may include complex
orchestration of remote services. From our point of view,
it does not matter what is hidden behind the transition invo-
cation. For now, it is just an invocation of an API with which
the user communicates.

For example, Fig. 3 presents a situation in which the user
utilizes an application entity, represented by the issue state
machine, to perform two tasks, namely, to create an issue and
then to close the issue. The sequence flows from the start
event to the end event (the circles) determine the order of
these two tasks. The message flows from the tasks to the state
machine represent the two uses of the issue state machine.
Only the invoking message flows need to be drawn because
it is unambiguous that returning flows are antiparallel to the
invoking message flows and return back to the same task.

Based on the BPMN diagram in Fig. 3, the STS algorithm
can infer the ‘‘Issue statemachine’’ as presented in Fig. 5. The
statemachine contains the two transitions, tcreate and tclose, for
the user’s two tasks. Moreover, the state machine enforces the
order of the transitions as specified by the sequence flows in
the BPMN diagram. The states of the state machine do not
have meaningful labels because there is no such information
in the BPMN diagram (we will solve this later in this paper).
Section XI will present the details of the STS algorithm exe-
cution for the example in Fig. 3 once we define the algorithm.
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FIGURE 6. User decides scenario.

FIGURE 7. The state machine inferred from Fig. 6.

B. THE USER DECIDES
What if a user has multiple options for which tasks to per-
form next in the business process? Such a scenario can be
expressed in a BPMN diagram as a simple branching using
an exclusive gateway. The valid order in which the user can
perform the tasks is then determined by reachability between
the tasks.

For example, Fig. 6 shows an extended version of the
previous example. The user creates the issue as before, but
then the user has two options as to how to resolve the issue,
namely, to mark the issue as completed or as failed. Which
of the options the user chooses is a result of the process issue
task (in the middle).

A state machine inferred from this BPMN diagram will
have three transitions, one for each of the invoking message
flows from the user process to the issue statemachine process.
As in the previous example, there are no returning message
flows explicitly drawn in the BPMN diagram, so the informa-
tion regarding the new state is returned to the invoking tasks,
and thus we can assume that the returning message flows
return back to the origin of each invoking message flow.

The transitions of the inferred issue state machine are
arranged so that the mark issue transitions follow after the
create issue transition because the respective tasks in the
BPMN diagram are reachable from the ‘‘create issue’’ task.
A state diagram of the issue statemachine is pictured in Fig. 7.
The user invokes transition tc followed by tmC or tmF depend-
ing on the desired result state QS (Success) or QF (Fail),
respectively.

Note that the process issue task along with the preceding
intermediate timer event, the issue subject process, and the
exclusive gateway do not influence the inferred issue state
machine.3 However, this part of the process is essential for
the user to decide between the success and the failure of the
issue. To infer the issue state machine, we need only know
that the ‘‘mark issue’’ tasks are reachable from the ‘‘create
issue’’ task, but it is not important what is on the paths or
howmany participants are involved.4 Section XII will present
the details of the STS algorithm execution for the example
in Fig. 6.

C. THE MACHINE DECIDEs
In the previous section, we looked into a case where a user
had multiple options. However, the user is not the only entity
capable of making decisions. What if the user only invokes
an operation and then waits for what happens next? The
operation may require complex calculations, involve remote
services, or depend on data unavailable at the time of the
invocation. One way or another, the decision is not up to the
user.

As before, the scenario is still a simple branching, but
additionally, it includes an information transfer from the
machine to the invoking user. To express such branching in
the BPMN diagram, we use an event-based gateway with
explicit returning message flows from the state machine to
the events following after the gateway. The returningmessage
flows tell the user which branch of the BPMN diagram to use,
i.e., what the next valid action is.

Because we are interpreting the BPMN in the scope of a
user interacting with a web application for which individual
interactions are mapped on rapid HTTP request–response
cycles, we consider the transitions to be atomic operations,

3As long as the reachability property is preserved.
4As long as the path does not include anything within the inferred state

machine. We will get to this detail later, in Section IX.
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FIGURE 8. Machine decides scenario.

FIGURE 9. The state machine inferred from Fig. 8.

at least from the user’s point of view. Therefore, no additional
task or event nodes can be placed between an invoking and
related receiving message flows in the BPMN diagram. This
limitation makes the placement of the returning flows unam-
biguous.

For example (see Fig. 8), if we take the previous example
and let the user record results from the process issue task,
then the issue state machine will tell the user whether the
issue is solved successfully or if it failed. Note the opposite
direction of the last two message flow arrows in comparison
to the previous example; the user invokes the record results
transition and then receives one of the two possible answers
rather than invoking one of the two possible transitions.

A state machine inferred from the example will have only
two transitions; however, the latter transition will have two
possible results – see Fig. 9. The user invokes transitions tc
followed by trR, but it is up to the state machine to decide
whether the resulting state will be QS (Success) or QF (Fail).
This makes the inferred state machine nondeterministic, as
explained in Section III. Section XIII will present the details
of the STS algorithm execution for this example.

D. SYNCHRONIZATION BETWEEN USERS VIA THE
APPLICATION
Thus far, we have dealt with one user interacting with a
state machine, but what if we have two users interacting with
a single state machine? How to deal with such a scenario
without opening the Pandora’s box of parallel computing?
To keep things simple, we shall deal with only a simple case

FIGURE 10. Synchronization between users.

where one user tells another user to continue. It is a common
and useful scenario with a simple synchronization.

Let us change the first example (see Fig. 3) so that one user,
Alice, creates an issue and another user, Bob, closes the issue.
Fig. 10 presents this scenario in a BPMN diagram. There are
two invoking message flows labeled ‘‘create’’ and ‘‘close,’’
just as before, but there is also a third message flow that
notifies Bob that Alice created the issue. Returning message
flows are as simple as before; both implicitly return to the
tasks where the respective invoking message flows originated
(not pictured in the figure because they are implicit). The third
message flow in the figure, labeled ‘‘issue created,’’ is not a
returning message flow or an invoking message flow. Such
a message flow only propagates information about a new
state of the state machine. Once the create transition finishes,
the returning message flow will inform Alice about the result
of the transition, i.e., the new state. Additionally, at the same
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moment, the third message flow will notify Bob so that he
can react and deal with the situation.

The third message flow in our example and all message
flows leaving a state machine process, in general, shall
be referred to as potential returning message flows (where
returning message flows are a subset of potential returning
message flows). If a potential returning message flow has an
invoking message flow assigned, then it is a returning mes-
sage flow (it is not potential anymore). Thus, the returning
message flows must always return to the same participant
who invoked the transition (otherwise, it is only a potential
returning message flow).

The state diagram of the statemachine is precisely the same
as in the first example (see Fig. 5) because the state machine
does not care who invokes the transitions. However, if we
would like to introduce access control to the state machine,
the transitions might have different permissions assigned to
reflect access rights of the respective invoking user.

The important thing to realize is the semantics of the
returning message flows and potential returning message
flows. While the invoking message flows represent a uni-
directional command, the potentially returning message
flows represent a notification, a propagation of information.
A user invokes a transition using an invoking message flow,
the returning message flow notifies the invoking user that the
transition is complete (with the provided result), and the other
potential returning message flows notify other participants
that the transition has happened.

This distinction is not apparent from the BPMN diagrams,
but it is essential for their interpretation. The notification
about a new state represents equivalence of information; at
the given moment, both the recipient and the sender of the
message flow have the same information about the new state.
In our example, it means that both Alice and Bob know the
state of the Issue state machine once the ‘‘create’’ transition is
completed. Such information may quickly become obsolete,
however.

Section XIV will present the details of the STS algorithm
execution for the example in Fig. 10.

VII. STATE LABELING
TheBPMNdiagrams describe business processes using tasks,
gateways, and events connected by sequence flows. There-
fore, the diagram can express when a participant is perform-
ing a certain task or is waiting for a certain event. What the
diagram does not describe is in which state the participant
is or what the participant knows about another participant’s
state. BPMN notation merely lacks the syntax to express such
information.

When inferring a state machine from a BPMN diagram,
the STS algorithm can number the states of the state machine
or use some heuristic to guess reasonable labels based on
nearby strings in the BPMN diagram. However, neither will
produce useful results, and both programmers and users need
proper labels to work with the state machine and refer to it
while communicating with each other.

To provide custom state labels, we introduced annotations
into the BPMN diagrams. Such an annotation is specifically
formatted text placed in a node label or an attached comment
node. To name a state, we use the state name prefixed by the
‘‘@’’ symbol – see Fig. 1, which illustrates the invocation of
transition t leading from state A to state B with two possible
annotations for state B.
The semantics of the annotation are as follows: ‘‘The latest

information about the state of the state machine this partici-
pant received at this point is this state.’’

Note that the potential returning message flows propagate
information about the state of the state machine. There-
fore, the convention is to interpret the annotations after the
message flows are received. Additionally, the information
might have changed since it was initially received, but the
participant will not know until another potential returning
message flow arrives, so the state information defined by the
annotation is valid on all nodes from the previous potential
returning message flow to the next one or the next invoking
message flow.

Because the scope of an annotation may span over multiple
nodes or even a considerable part of the BPMN diagram, it is
vital to avoid the specification of conflicting state information
in the annotations. The STS algorithm detects such conflicts
and reports them as errors because a single state cannot have
more than one label.

Alternately, it is possible to specify the same state onmulti-
ple unconnected places in the BPMN diagram, or even in dif-
ferent diagrams. Such a situationwill cause the detected states
in the BPMN diagrams to be merged into one, effectively
allowing various aspects of the behavior to be modeled in
separate BPMN diagrams. Such shared state labels should be
used only at start and end events; otherwise, the state machine
may continue according to a different BPMN diagram than
the user.

A Smalldb state machine uses the concept of a ‘‘Not
Exists’’ state, which represents nonexistence of the modeled
entity. This state usually occurs at the beginning and the end
of the process. To avoid unnecessary clutter in BPMN dia-
grams, the STS algorithm provides an implicit state labeling;
unless an annotation specifies otherwise, the start and end
events define the inferred state to be the ‘‘Not Exists’’ state.
The implicit state labeling is merely a syntactic sugar to ease
the creation of the BPMN diagrams, and it can be easily
omitted from the algorithm.

VIII. NOTATION AND OPERATORS
For easier manipulation with arrows and relations (binary and
ternary) in the next sections, we define the following helper
functions σ and τ to retrieve the domain and the range of a
relation (sigma σ as the source node and tau τ as the target
node of an arrow or a set of arrows); a helper function λ to
retrieve the third item of the ternary relation (we use lambda
λ as a label of otherwise binary relation); graph projection
operators V and E to obtain nodes and edges of a graph,
respectively; and a pathfinding operator _ as follows:
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• σ (X ) = {x | ∃y : (x, y) ∈ X}
σ (X ) = {x | ∃y, z : (x, y, z) ∈ X}

• τ (X ) = {y | ∃x : (x, y) ∈ X}
τ (X ) = {y | ∃x, z : (x, y, z) ∈ X}

• λ(X ) = {z | ∃x, y : (x, y, z) ∈ X}
• Additionally, for a simple pair (x, y) or arrow −→x y:
σ ((x, y)) = x, τ ((x, y)) = y

• For a ternary relation, a triplet (x, y, z):
σ ((x, y, z)) = x, τ ((x, y, z)) = y, λ((x, y, z)) = z

• For empty sets: σ (∅) = ∅, τ (∅) = ∅, λ(∅) = ∅
• V (G′) = V ′, E(G′) = E ′ for a graph G′ = (V ′,E ′).
• a _ b is an oriented path (see [8]) through graph G′

from a ∈ V (G′) to b ∈ V (G′); it is a subgraph (V ′,E ′)
of G′, as it includes both nodes V (a _ b) ⊆ V (G′) and
arrows E(a _ b) ⊆ E(G′).

The STS algorithm is based on sets of pairs or triplets that
represent various binary or ternary relations. We consider a
function or a map as such a relation as well.
A binary relation represented by a set F2 = {(x, y), . . . }

is always a function y = F2(x), and also a set of arrows
F2 = {(x → y), . . . }. Additionally, for f2 ∈ F2, we can write
the following:

f2 = (x, y) = (x → y) = (σ (f2)→ τ (f2))

A ternary relation represented as a set F3 = {(x, y, z), . . . }
is always a function (y, z) = F3(x), and also a set of labeled
arrows F3 = {(x

z
−→ y), . . . }. Additionally, for f3 ∈ F3, we

can write the following:

f3 = (x, y, z) =
(
x

z
−→ y

)
=

(
σ (f3)

λ(f3)
−−→ τ (f3)

)

IX. THE STS ALGORITHM
The STS algorithm generates a Smalldb state machine that
implements the designated participant, the so-called state
machine participant, in a provided BPMN diagram. A pro-
grammer draws use cases as to how users will use an appli-
cation, and the algorithm generates the application to fit the
use cases. Therefore, the input of the algorithm is a BPMN
diagram with a chosen state machine participant, which the
STS algorithm will implement using a state machine, and
one or more user participants, which interact with the state
machine participant.

The core idea behind the STS algorithm workflow is iden-
tification of transitions and inspection of the propagation of
information regarding new states after the transitions. To do
so, the algorithm locates state machine transitions within the
BPMN diagram by inspecting reachability from places where
users invoke state machine transitions to possible ends of
each state machine transition, and then it inspects reachability
between the transitions to detect states as they connect subse-
quent transitions. As we will see, the STS algorithm exhibits
a certain symmetry in transition and state detection, but let us
start from the beginning.

The algorithm generates the state machine in the following
five stages:
1) Identification of invoking and receiving nodes
2) Transition detection
3) State detection
4) State labeling
5) State machine construction

First, the algorithm identifies invoking and potential receiv-
ing nodes by analyzing message flows to and from the state
machine participant, i.e., the points where transitions start
or end. Then, the algorithm inspects reachability from the
invoking nodes to potential receiving nodes, forming a tran-
sition relation and identifying which of the potential receiv-
ing nodes are truly receiving nodes. The transition relation
describes where a given transition is invoked in the BPMN
diagram. The remaining nodes provide connections between
individual transitions; therefore, the algorithm inspects reach-
ability from the potential receiving nodes to invoking nodes,
forming a state relation. These two relations are then put
together to build a transition function (table) of the resulting
state machine.
Because the STS algorithm is based mostly on inspecting

reachability with constraints, it interprets only a few features
of the BPMN notation. Namely, it distinguishes message
flows and sequence flows, respects which participant nodes
belong to, and interprets events as start/intermediate/end only.
Everything else is just a pathwhen inspecting the reachability.
It is important to keep in mind that the BPMN diagrams are
used on multiple occasions during software development, not
only to synthesize the state machine.
However, the algorithm requires the states to be named

because BPMN is oriented around tasks and actions, not
the states. Therefore, custom annotations are added into the
BPMN diagrams to provide human-friendly state labels. The-
oretically, these annotations are not mandatory, but without
them, the state names would be unpleasant to use later in the
generated application. The secondary benefit of the annota-
tions is in providing natural points through which multiple
diagrams can be merged into a single state machine.
For a better understanding, the STS algorithm is explained

using a simple example based on the ‘‘machine decides’’ situ-
ation from Section VI-C. The example input of the algorithm
is presented in Fig. 11. The example covers two transition
invocations. The first is from the node A, and the second
is from the node C . In the case of the second transition,
the user’s next action (D1 or D2) depends on the result of the
invoked transition (tC1 or tC2).
After a mostly informal explanation of the entire algorithm

in the following subsections, a compact formal summary will
follow.

A. STAGE 1: INVOKING AND RECEIVING NODES
The first step is to identify invoking and potential receiving
nodes, i.e., the sets I and R+. An invoking node is a node
where a participant invokes a transition of the state machine.
A receiving node is where the invoking participant receives
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FIGURE 11. Example – Source BPMN diagram.

the result or confirmation of the invoked transition. A poten-
tial receiving node is where a situation suggests the node
could be the receiving node, but further analysis (transition
detection) is needed for a confirmation.

Both the invoking and the potential receiving nodes are
identified by message flows to/from the state machine partic-
ipant. Invoking nodes I are those with an outgoing message
flow (to the state machine participant). Possibly receiving
nodes R+ are all nodes with incoming message flows outside
of a state machine process or with an implicit returning
message flow. The implicit returning message flow is an
assumed message flow antiparallel to an invoking message
flowwhen there is no other receiving node reachable from the
given invoking node (as described in the next section). This
means that some of the invoking nodes may also be potential
receiving nodes.

The receiving nodes R are those nodes of R+ that have an
invoking node assigned (these will be identified later).

Because the STS algorithm will later need to know
which transition is invoked by each invoking message flow,
it collects labels of invoking message flows in a relation
L = {(ni,m)}, which assigns a method m (a name of a
transition and also an input symbol of the state machine) to
each invoking node ni. In this paper, we assume at most one
invoking message flow per node.

Example (Fig. 11): I = {A,C} because of message
flows tA and tC . R+ = {A,C1,C2} because of message
flows tC1 and tC2. Node A is considered a receiving node
because it has an implicit returning message flow. Labels
L = {(A, tA), (C, tC )} are collected from the invoking mes-
sage flow labels.

B. STAGE 2: TRANSITION DETECTION
1) TRANSITION RELATION
An invocation of a state machine transition starts from an
invoking node, where a user invokes the transition, and ends
in one of the receiving nodes, where the user receives one of
the possible answers from the state machine.

To capture the transition invocations, we define a ternary
transition relation T = {(ni,Nr ,m)}, which assigns a set
of receiving nodes Nr ⊆ R+ to an invoking node ni ∈ I ,

along with a label m ∈ M denoting which transition5 is
invoked. We can picture the transition relation T as a set of
the following arrows:

ni
invoking

m
−−−→
(T )

Nr
receiving

An important secondary result of the transition detection
consists of identification of receiving nodes R ⊆ R+. The
receiving nodes are such potential receiving nodes that are
part of the transition relation T . The remaining potential
receiving nodes R+ \Rmay help with synchronization of the
participants and with state propagation.

To build the transition relation, the STS algorithm needs to
inspect reachability from the invoking nodes to the potential
receiving nodes over sequence flows and nodes, which are not
within the state machine participant and which are not event
nodes. Invoking nodes and receiving nodes can occur only as
endpoints. Therefore, if a path from an invoking node ni to
a receiving node nr exists, then these nodes are connected
by T , i.e., (ni, {nr , . . . },m) ∈ T . Note the assumption of
single-threaded processing, which allows us to identify the
relation uniquely.

The method m, which labels the relation T , is determined
by the label of an invoking message flow leaving the given
invoking node ni.
Luckily, the STS algorithm only needs to detect the exis-

tence of paths from ni to Nr ; it does not need to find any path
in particular. This small detail means that the transition rela-
tion T can be built very quickly with linear time complexity.

Example – Fig. 12: The gray bold arrows represent the
following transition relation:

T = {(A, {A} , tA) , (C, {C1,C2} , tC )}

Note that tA and tC will become labels of transitions, the
arrows, of the resulting state machine, although they are
nodes in Fig. 12.

2) IMPLICIT TASKS AND RETURNING MESSAGE FLOWS
An invocation of a state machine transition is represented in
the BPMN diagram by three elements: the invoking message

5In a Smalldb state machine, the transition is implemented by a
method m.
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FIGURE 12. Example – Transition detection (grey bold arrows) and state detection (grey areas).

flow from the user’s task to a state machine task, the state
machine task representing the transition itself, and finally
a returning message flow back to the user. Because of the
process isomorphism (as explained in Section V), the state
machine task and the returning flowmay be omitted in simple
cases6 without losing any information from the diagram.
As discussed in Section VI-A, such simplification is often
used intuitively in practice and is also desirable because it
makes diagrams easier to draw and comprehend.

While the STS algorithm does not need to reconstruct
the implicit tasks and message flows, it is helpful for our
example to do so anyway because it makes understanding the
algorithm much easier.

The rule adding the implicit task node is quite simple: if
the invoking message flow tA =

−−−→
AVSP from the user’s task

A ends on a border of the state machine participant VSP, then
a new task node TA (the implicit task) is added to the state
machine participant VSP, and the original message flow tA is
replaced with a new message flow t IA =

−−→
ATA.

The rule adding the implicit returning message flows is
even simpler: if the invoking node is also a receiving node,
then there should be a returning message flow to this node.

In the case of implicit task nodes and existing returning
message flows, the reconstruction may occur during the tran-
sition detection. When an element t = (ni,Nr ,m) of the
transition relation T is found, the returning message flows
from a task node to each node of Nr should exist. The
returning message flows are already present but start from
the participant VSP rather than from a task node.
Example – Fig. 12: At this point, the invoking message

flows tA and tC are replaced with nodes TA and TC and
message flows t IA =

−−→
ATA and t IC =

−−→
C TC . The message flow

tRA is added because no receiving node is found as C ∈ I
separates A from C1,C2 ∈ R. tRC1 and t

R
C2 are assigned to t

I
C .

6Unless there is some more complex communication between multiple
users.

C. STAGE 3: STATE DETECTION
1) STATE ANNOTATIONS
As explained in Section VII, state annotations represent
knowledge of one participant about the state of another partic-
ipant. The annotations are collected from the BPMN diagram
and stored in a map A = V → Q, which assigns states Q of
the future state machine to nodes V of the BPMN diagrams.

It is important to keep in mind that the annotations do
not reflect the current state of the inferred state machine but
merely knowledge about the latest known state of the state
machine, and such information arrives via a message flow
only. Therefore, the scope of the annotation is a path from
a previous potential receiving node to a next invoking node.

In other words, if there is a path from nr ∈ R+ to ni ∈ I
with a node na ∈ (nr _ ni), then annotation A(na) attached
to node na means that, in the node nr , the participant received
information that the state machine is in state A(na) ∈ Q.

2) STATE RELATION
A state is a path from one transition to another. Therefore,
to identify states, we inspect reachability from each poten-
tial receiving node and start event7 to all invoking nodes
and end events. The paths may include sequence flows and
any nodes except the invoking and potential receiving nodes
since, in these nodes, information about the current state
is updated. Inclusion of message flows between users in
the paths leads to complicated state propagation; therefore,
we consider only sequence flows when constructing the state
relation and expect the use of additional annotations.

The result of the state detection is a state relation
S = {(nr ,Ni, {qA})}, which assigns a set of invoking nodes
Ni ⊆ I to a potential receiving node nr ∈ R+ along with a
label qA denoting in which state the state machine has been
when the state was entered. We can picture the state relation

7As the start events are related to the ‘‘Not Exists’’ state in the Smalldb
state machine [1].
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S as a set of the following arrows:

nr
receiving

{qA}
−−−→
(S)

Ni
invoking

To build the state relation, the STS algorithm needs to
inspect reachability from the potential receiving nodes and
start events to the invoking nodes and end events over the
connected sequence flows and nodes that are not within the
state machine participant and that are not invoking nodes or
potential receiving nodes. Therefore, if a path from a potential
receiving node nr to an invoking node ni exists, then these
nodes are connected by S, i.e., (nr , {ni, . . . }, {qA}) ∈ S.

The state annotation qA must be the only annotation found
on all the paths from the potential receiving node nr to all
invoking nodes Ni. In case there is more than one annotation
found (and these annotations are not the same), the algorithm
terminates with an error. If no annotations are found, implicit
labeling is applied instead (we will return to this later).

A duality between the state relation S and the transition
relation T is not accidental as there are no significant struc-
tural differences between the state regions8 and the transition
regions9 of a BPMN diagram.

Example – Fig. 12: The gray areas mark regions of reach-
ability. The state relation is the following:

S = {(S1, {A}, {Qs}), (A, {C}, {Qb}), (C1, {E1}, {Qe1}),

(C2, {E2}, {Qe2})}

D. STAGE 4: IMPLICIT STATE LABELING
Once the state relation is calculated, we may want to make a
fewminor adjustments for users’ convenience. The following
sections describe an implicit interpretation of two features
occurring in BPMN diagrams, which can serve as a fallback
behavior when no annotation specifies otherwise. In both
cases, we modify the earlier computed state relation, and both
operations are optional.

1) IMPLICIT ‘‘NOT EXISTS’’ STATE
Start and end events in the context of a Smalldb state machine
represent the ‘‘Not Exists’’ state, unless defined otherwise.
Therefore, if there is no annotation specifying the state,
the ‘‘Not Exists’’ state is assumed if the state relation S starts
in a start event node or ends in an end event node.

This rule implements a convention to begin and end the
business process, a syntactic sugar, and thus it is completely
optional. In case this rule is omitted, the affected states will
be given random names similar to any other state with no
annotations.

Example – Fig. 12, 13: Since there are no annotations miss-
ing in our example, the implicit ‘‘Not Exists’’ state will not
apply. However, in case we would remove all the annotations,
the states Qs, Qe1, and Qe2 would be merged into the single
‘‘Not exists’’ state, and Qb would be named randomly.

8Paths from potential receiving nodes and start events to invoking nodes
and end events.

9Paths from invoking to receiving nodes.

FIGURE 13. Example – Inferred state machine.

Example – Fig. 14, 15: Since there are no annotations on a
path S1 _ R, the ‘‘Not Exists’’ state will be assumed (QS1).
Both paths A _ E1 and C _ E2 are annotated; therefore,
the implicit state rule does not apply there. The path S2 _ M2
is ignored as it does not end in an invoking node.

2) IMPLICIT STATE PROPAGATION BETWEEN PARTICIPANTS
A state machine may serve as a communication channel to
synchronize multiple users. One user invokes a transition, and
as this user receives the response, other involved users receive
the response in the form of a notification about the new state.
Such a scenario is represented by multiple message flows
leaving a transition task node in the state machine participant,
some message flows leading to the invoking user, and the
remaining message flows leading to the other involved users.

When there are multiple possible outcomes of the transi-
tion, and thus multiple returning message flows, we need to
rely on annotations to mark matching message flows. How-
ever, if there is only one possible outcome of the transition,
we can safely assume that all involved users will receive the
same notification and implicitly propagate the state informa-
tion to all of them.

For example, in Fig. 14, we have a tester and a developer.
The tester reports a bug and assigns it to the developer, and
then the state machine sends a notification to the developer,
who then fixes and closes the bug. An annotation connected to
the node A tells us that the transition ends in the ‘‘Assigned’’
state. Because there is a message flow

−−−→
TAM2 connected to

the same transition node as the annotated receiving node (via
−−→
TA A), the state information is propagated toM2, and therefore
we know that the ‘‘close’’ transition is invoked from the
‘‘Assigned’’ state (because of the path M2 _ C). As we can
see, the path S2 _ M2 has no influence on the state machine;
however, it provides a better understanding of the developer’s
workflow.

The implicit state propagation is also an optional feature
and can be completely replaced by the explicit use of anno-
tations in all cases. Similar to the implicit ‘‘Not Exists’’ state
(discussed in the previous section), its purpose is to provide
convenience and reduce clutter in the diagrams.

E. STAGE 5: STATE MACHINE CONSTRUCTION
At this point, all necessary computations are already done;
both transition relation and state relation are completed:

• Transition relation T is a set of arrows:

ni
invoking

m
−−−→
(T )

Nr
receiving
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FIGURE 14. State propagation between multiple participants.

• State relation S is a set of arrows:

nr
receiving

{qA}
−−−→
(S)

Ni
invoking

We only need to collect the results and construct the desired
state machine:

• States Q of the state machine are λ(S), the labels of the
state relation S.

• Names of methods M as input symbols are λ(T ),
the labels of the transition relation T .

• Transition function α : (qt ,m) 7→ Qt+1 is a composition
of the state relation S and the transition relation T using
the S → T → S schema:

· · ·
{qt }
−−−→
(S)

Ni 3 ni
invoking

m
−−−→
(T )

Nr 3 nr
receiving

Qt+1
−−−→
(S)
· · ·

Both relations are connected using invoking and receiv-
ing nodes. Then, the respective labels of the relations
are collected. Finally, to each pair of a state qt ∈ Q
and a name of a method m, the possible next states
Qt+1 ⊆ Q are assigned, forming a transition table of
a nondeterministic finite automaton.

The S → T → S schema, the final step of the algorithm, is
what gives the STS algorithm its name.

Example – Fig. 13: From the previous stages, we know that
the transition relation T and state relation S are:

T = {(A, {A} , tA) , (C, {C1,C2} , tC )}

S = {(S1, {A}, {Qs}), (A, {C}, {Qb}),

(C1, {E1}, {Qe1}), (C2, {E2}, {Qe2})}

FIGURE 15. The state machine inferred from Fig. 14.

Therefore, the Smalldb state machine has states Q, names of
methods M , and transition function α:

Q = {Qs,Qb,Qe1,Qe2}

M = {tA, tC }

α = {((Qs, tA), {Qb}), ((Qb, tC ), {Qe1}),

((Qb, tC ), {Qe2})}

F. SUMMARY OF THE STS ALGORITHM
In the previous sections, we learned that the input of the
STS algorithm is the BPMN diagram B (Fig. 11). There are
two important intermediate results: the transition relation T ,
which connects invoking to receiving nodes (Fig. 12), and
the state relation S, which connects the remaining fragments
of the diagram not covered by T . The desired state machine
(Fig. 13) is then created by combining the two relations
together.

Note that the operators V , E , σ , τ , λ, and _ are defined in
Section VIII.
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The full-yet-compact description of the STS algorithm is
as follows:
• The output of the STS algorithm is a nondeterminis-
tic finite automaton with a set of states Q, names of
methods as input symbols M , and transition function10

α(qt ,m) 7→ Qt+1, where qt ∈ Q, Qt+1 ⊆ Q, m ∈ M ,
and the ‘‘Not Exists’’ state Q0 ∈ Q.

• The first input of the STS algorithm is a BPMN diagram,
a directed graph B = {V ,E,A,M ,P} of nodes V ,
arrows E , annotations A : V → Q, message flow labels
L : Em → M , participants VP ⊂ V , and an affiliation
of a node to a participant’s processes P : V → VP
(where ∀vp ∈ VP : P(vp) = vp). The second input is a
state machine participant VSP ∈ VP, for which the state
machine should be constructed by the STS algorithm
(example: see Fig. 11). Furthermore:
– VS = {v | v ∈ V ∧ P(v) = VSP} is the set of all

nodes of the state machine process.
– Ve ⊆ V is the set of all events.
– Vstart ⊂ Ve is the set of start events.
– Vend ⊂ Ve is the set of end events.
– Em ⊆ E is the set of all message flows.

• Stage 1: Identify invoking and potential receiving nodes
(Sec. IX-A)
– Invoking nodes I (note S ∈ VS ):
I = {σ (e) | ∀e ∈ Em ∧ τ (e) ∈ VS}

– Primary potential receiving nodes Rm:
Rm = {τ (e) | ∀e ∈ Em ∧ σ (e) ∈ VS}

– Path constraint predicate11 PT (p = a _ b)
≡ ((I ∪ Rm ∪ VS ∪ Ve) \ {a, b}) ∩ p = ∅

– Potential receiving nodes R+:
R+ = Rm ∪ {ni | ni ∈ I ,∀ni¬∃nr ∈ Rm :

(∃pt : pt = ni _ nr ∧ PT (pt ))}
Note that the path pt is the same as in T . Therefore,
R+ can be computed together with T in the next
stage. Moreover, I ∪ Rm = I ∪ R+.

• Stage 2: Transition detection (Sec. IX-B)
– Transition relation T (ternary) from I to R+ (by

constructing Nr and finding m):
T = {(ni,Nr ,m) | ni ∈ I , Nr ⊂ R+, Nr 6= ∅,
∀nr ∈ Nr∃pt : pt = ni _ nr ∧ PT (pt ),
∃ei ∈ Em : σ (ei) = ni ∧ τ (ei) ∈ VS ),
m = L(ei)}

(E.g., paths p are the gray arrows in Fig. 12.)
– Receiving nodes:
R = R+ ∩

⋃
τ (T ) =

⋃
τ (T ), R ⊆ R+

• Stage 3: State detection (Sec. IX-C)
– Path constraint predicate PS (p = a _ b)
≡
(
(I ∪ R+ ∪ VS ) \ {a, b}

)
∩ p = ∅

10In the Smalldb state machine definition, [1] α has slightly different
semantics, and the transition function involves a microstep, but for now we
can ignore it.

11PT (p) valuates true iff path p does not intersect nodes from I , R+, VS ,
nor Ve. It may start or end in these nodes, though.

– State relation S (ternary) from R+∪Vstart to I∪Vend
(by constructingNi and collecting annotations12 QA
found along the paths):
S = {(nr ,Ni,QA) | nr ∈ R+ ∪ Vstart ,

Ni ⊆ I ∪ Vend ,Ni 6= ∅,
∀ni ∈ Ni∃ps : ps = nr _ ni ∧ PS (ps),
QA = τ (AS ), |QA| ≤ 1,AS ⊆ A,
∀a ∈ AS∃ps : ps = nr _ ni ∧ PS (ps)
∧ σ (a) ∈ ps ∧ σ (a) /∈ Ni}

(E.g., paths ps are in the gray areas in Fig. 12.)
• Stage 4: Implicit State labeling (Sec. IX-D)

– Implicit labeling (assign λ(s); use the ‘‘Not Exists’’
state when there is no annotation but a start or end
event is present):
∀s ∈ S : λ(s) = ∅ ∧ (σ (s) ∈ Vstart
∨(τ (s) ∩ Vend ) 6= ∅) H⇒ λ(s) = {Q0}

– Implicit state propagation in transitions with a sin-
gle receiving node (assign λ(sr )):
∀t1 ∈ T , ei ∈ Em,Er ⊂ Em, Sr ⊂ S :
|τ (t1)| = 1 ∧ σ (t1) = σ (ei)
∧ (∀er ∈ Er : τ (ei) = σ (er ))
∧σ (Sr ) = τ (Er )
H⇒ ∀sr ∈ Sr∃qA ∈ Q : λ(sr ) = {qA}

• Stage 5: State machine construction using the
S → T → S schema (Sec. IX-E):

· · ·
{qt }
−−−→
(S)

Ni 3 ni
invoking

m
−−−→
(T )

Nr 3 nr
receiving

Qt+1
−−−→
(S)
· · ·

– States: Q = λ(S)
– Names of methods as input symbols: M = λ(T )
– Transition function α : (qt ,m) 7→ Qt+1 by com-

posing relations S and T using the S → T → S
schema:

α = {((qt ,m),Qt+1) | ∀s1 ∈ S, t ∈ T , s2 ⊂ S :

τ (s1) 3 σ (t), τ (t) = σ (s2),

qt = λ(s1),m = λ(t),Qt+1 =
⋃
λ(s2)}

G. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
The STS algorithm is surprisingly effective. The first stage
of the algorithm is only a simple linear iteration over all
message flowswhile collecting invoking and potential receiv-
ing nodes. The second stage, transition detection, involves
reachability inspection using DFS (depth-first search) over a
portion of the graph (I _ R+), which has linear complexity
O(|E| + |V |). The third stage, state detection, uses DFS to
inspect the reachability on the remaining portion of the graph,
but DFS is run twice – forward (R+ _ I ) to inspect the
reachability and then backwards from each reached invoking
node (R+ ^ I ) to collect state annotations on all found paths.
Finally, the fourth stage, state machine construction, involves
combining σ (S) with τ (T ).
In the worst case scenario, a large set of parallel task

which are receiving nodes followed by a long chain of regular

12There should only be one annotation present on the paths from nr to Ni.
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FIGURE 16. Processing speed of the tested scenarios: a chain of tasks (N),
user decides (U), machine decides (M), a combination of user decides and
machine decides (B), and a T-shape BPMN diagram (T).

nodes terminated with a receiving node (forming a T-shaped
graph; see Fig. 17), such a component will have the total
quadratic complexity O(|V | · (|E| + |V |)) when inspecting
reachability from each of the parallel tasks. However, in a
typical scenario, the graph consists of small fragments, where
only a small number n of receiving nodes are reachable from
each invoking node and vice versa. Therefore, the practical
complexity is roughly O(n · (|E| + |V |)), which is linear
complexity (since n is bounded in practice).

We tested the STS algorithm on large synthetic graphs up
to 175 000 nodes plus edges using a laptop (Intel i7 2.8GHz,
8GBRAM, using PHP 7.3) – see the plot in Fig. 16. The
shape of the generated graphs followed the examples pre-
sented earlier: a chain of N simple tasks (N in Fig. 16), the
‘‘user decides’’ scenario with N parallel branches (U), and
the ‘‘machine decides’’ scenario with N possible results (M).
In all three cases, the algorithm complexity was linear with a
processing speed of approx. 5 000 to 13 000 nodes plus edges
per second, i.e., 50 000 to 130 000 nodes and edges in approx.
10 seconds.

To explore the limits of the algorithm in the worst case
scenarios, we constructed the following two cases. The first
case combines the ‘‘user decides’’ scenario and ‘‘machine
decides’’ scenario, where each branch of user’s decision was
terminated with a machine decides fragment each leading to
the same set of possible results, effectively forming a total
bipartite graph. In this case, the algorithm performed with
sublinear complexity because the overhead of a nonoptimized
graph representation become apparent; see the B in Fig. 16.

The second, final, case was the mentioned T-shape graph
(Fig. 17) with N/2 parallel task nodes followed by an N/2
nodes long sequence of nodes not in I or R+. As expected,
in this case, the STS algorithm performed with quadratic
complexity, where the processing of 1 000 nodes and edges
took about 4 seconds and 10 000 nodes and edges took about
five minutes; see the T in Fig. 16. However, we can utilize
the caching of reachable nodes from once visited nodes to

exchange linear memory complexity for nearly linear time
complexity.

This effectivity allows the use of the algorithm to generate
live previews and to implement error detection during inter-
active edits of the BPMN diagrams.

Because the algorithm only iterates the BPMN graph using
DFS and then combines collected data, the convergence of the
algorithm is guaranteed in all cases.

X. A SIMPLE PRACTICAL EXAMPLE: CRUD
Let us show the basic operation of the STS algorithm by
implementing CRUD (create, read, update, delete), the basic
andmost common pattern occurring in web applications. This
pattern is a primary tool of modern ORM (object-relational
mapping) frameworks, and it is also a base for RESTful API,
which maps the operations to HTTP methods. While most
frameworks expect model entities to be CRUD and nothing
else, Smalldb does not enforce how an entity is expected to
behave.13 The Smalldb framework provides a prefabricated
component to implement CRUD behavior easily; however,
in this example, we take a look at a different approach to
achieve the CRUD behavior. This approach is not meant to
be used as–is in practice, but it may serve as a starting point
for more complex workflows.

Fig. 18 presents a BPMN diagram of how a user uses a
CRUD entity (ignore the gray areas for now). First, the user
creates an entity, then she may edit it multiple times, and
finally, she deletes it. Each of the three message flows in
the figure represents a state machine transition invocation,
and all of the invocations are simple tasks as presented in
Section VI-A.

Note that the read operation is missing in the diagram
because the read operation may be performed at any time.
Typically, the read operation precedes every invocation of a
state machine transition as the user loads an HTML page that
he then uses to invoke the transition.

Oncewe let the STS algorithm process the BPMNdiagram,
we obtain the inferred state machine presented in Fig. 19.

To obtain better insight into how the algorithm inferred
the state machine, the gray areas in Fig. 18 present detected
states as a partitioning of the BPMN diagram (similar to
Fig. 12). First, the algorithm identifies the invoking nodes
I = {C,E,D}, and the receiving nodes are the same
(R = R+ = I ).
Therefore, the transition relation T and state relation S are

very simple:
T = {(C, {C} , create) , (E, {E} , edit) ,

(D, {D} , delete)}

S = {(S, {C}, {Not Exists}), (C, {E,D} , {Exists}) ,

(E, {E,D} , {Exists}) , (D, {F} , {Not Exists})}

Once S and T are combined together, the algorithm pro-
vides us with the state machine as presented in Fig. 19.
Note how the gray regions in Fig. 18 become the states

13As long as it can be expressed using a nondeterministic state machine.
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FIGURE 17. T-Shape BPMN Diagram.

FIGURE 18. Crud entity in a BPMN diagram (The grey areas in the background are not present in the source
diagram).

FIGURE 19. The state machine inferred from Fig. 18.

in Fig. 19 and the task nodes connecting the regions become
the arrows.

The ‘‘Not Exists’’ state is both the initial and final state
and is drawn twice for better readability; the state machine
forms two loops since the entity may be created again once
deleted. This state represents a state in which the entity does
not exist [1]; there is no record of the entity. In the language
of object-oriented programming, the ‘‘create’’ transition rep-
resents a constructor, and the ‘‘delete’’ transition represents a
destructor.

As we can see, the edit loop is present in both the BPMN
diagram and the inferred state machine. While the BPMN
diagram represents the loop using sequence flows and the
‘‘Edit object’’ task, the state machine has a transition return-
ing to the same state.

XI. EXAMPLE: SIMPLE TASK
In Section VI, we presented the four basic features found in
BPMN diagrams and relevant to the STS algorithm. The first
of these was the simple task scenario (Sec. VI-A), in which a
user invokes two subsequent state machine transitions (‘‘cre-
ate’’ and ‘‘close’’) as presented in Fig. 3. The result is a state
machine of two transitions and three states, as shown in Fig. 5
(Q0 = Not Exists, QE = Exists, QC = Closed). Earlier,
we assumed that a programmer infers the implementation of
the Issue State Machine intuitively, but now we have the STS
algorithm available, so let us take a look at how it will cope
with the scenario.

The STS algorithm identifies the invoking nodes I and
receiving nodes R in Fig. 3, and then it infers the transition
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relation T and state relation S as follows:

I = R = R+ = {Cr,Cl}

T = {(Cr, {Cr}, create) , (Cl, {Cl}, close)}

S = {(S1, {Cr}, {Not Exists}) , (Cr, {Cl}, {Exists}) ,

(Cl, {E1}, {Closed})}

XII. EXAMPLE: THE USER DECIDES
The scenario discussed in Section VI-B presents a situation
in which a user creates an issue and later decides whether
the process has completed or failed – see Fig. 6. The result
is a state machine of three distinct transitions, as presented
in Fig. 7 (notice transitions tmC and tmF ).

The STS algorithm identifies the invoking nodes I and
receiving nodes R in Fig. 6, and then it infers the transition
relation T and state relation S as follows:

I = R = R+ = {Cr,Mc,Mf }

T = {(Cr, {Cr}, create) ,

(Mc, {Mc},markCompleted) ,

(Mf , {Mf }, {markFailed})}

S = {(S1, {Cr}, {Not Exists}) ,(
Cr,{Mc,Mf }, {Exists}

)
,

(Mc, {E1}, {Success}) , (Mf , {E2}, {Fail})}

XIII. EXAMPLE: THE MACHINE DECIDES
In contrast with the previous example, the scenario discussed
in Section VI-C presents a situation in which a user creates an
issue, but it is the machine that decides whether the process
has completed or failed – see Fig. 8. The result is a state
machine of one deterministic transition and one nondetermin-
istic transition, as presented in Fig. 9 (notice the two arrows
both labeled trR).
The STS algorithm identifies the invoking nodes I and

receiving nodes R in Fig. 8, and then it infers the transition
relation T and state relation S as follows:

I = {Cr,Rr},R = R+ = {Cr,Rs,Rf }

T = {(Cr, {Cr}, create) ,(
Rr,{Rs,Rf }, recordResults

)
}

S = {(S1, {Cr}, {Not Exists}) ,

(Cr, {Rr}, {Exists}) ,

(Rs, {E1}, {Success}) , (Rs, {E2}, {Fail})}

Note the difference between this and the previous example.
When user decides about the process, it is the state relation S
which represents the branching – Cr toMc orMf in this case.
However, when machine decides, it is the transition relation
T which represents the branching – Rr to Rs or Rf in this
case.

XIV. EXAMPLE: SYNCHRONIZATION BETWEEN USERS
The last example from Section VI presents a situation when
one user notifies another user via the state machine, see

SectionVI-D and Fig. 10. The result is the statemachine same
as in the Simple Task Example, see Fig. 5. The difference is
in who invokes which transition.

The STS algorithm identifies the invoking nodes I and
receiving nodes R in Fig. 10, and then it infers transition
relation T and state relation S as follows:

I = {Cr,Cl},R+ = {Cr, S2,Cl}

R = I = {Cr,Cl}

T = {(Cr, {Cr}, create) , (Cl, {Cl}, close)}

S = {(S1, {Cr}, {Not Exists}) , (Cr, {E1}, {Exists}) , 5

(S2, {Cl}, {Exists}) , (Cl, {E2}, {Closed})}

XV. LARGE PRACTICAL EXAMPLE: PIZZA DELIVERY
How to order pizza delivery online? The following exam-
ple presents the entire process starting with a hungry cus-
tomer ordering a pizza via a web application, continuing
with a chef baking the pizza, and ending with a delivery
boy bringing the pizza to the customer. While the example
attempts to be as realistic as possible, the limited space of this
paper allows us to explore only the important aspects of the
process.

A. THE SCENARIO
The BPMN diagram presented in Fig. 20 describes the inter-
action between a web application and three people, namely,
a customer, a chef, and a delivery boy. The source BPMN
diagram does not contain the gray areas or the numbers and
letters in brackets, as these are only added to help with the
following explanation of the example.

The scenario starts with a hungry customer (see node 0 in
Fig. 20). The customer visits a pizzeria website and selects a
pizza (node 1). Then, she can set the delivery address (4) and
change the size of the pizza (5). Additionally, the customer
may choose to delete the order (6) and not have the pizza at
all (8).

Once the order is ready, the customer submits it (7).
At this point, the order is either accepted (9) and the chef
is notified (18) or rejected (10) and returned to the cus-
tomer for additional changes, i.e., the chef may be too busy
with other orders, so the user may submit it again later or
never (12, 14).

As soon as the pizza order is properly submitted, the chef
confirms the order (19) and bakes the pizza (20). Then,
a delivery boy delivers the pizza to the customer (21). After
the payment, the delivery boy marks the order as deliv-
ered (23), gives the receipt to the customer, and returns to
the pizzeria (25). In case the delivery boy fails to locate the
customer (e.g., due to an incorrect address), he marks the
delivery as failed (22) and enjoys the pizza (24).

While the diagram may look slightly verbose at first, it is
important to realize that there are three people and a pizza
to orchestrate, programmers likely have no idea how the
business works in the background, and such a diagram may
be the only attempt to describe the business workflow.
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FIGURE 20. Pizza delivery example (The grey areas in the background are not present in the source diagram.).

B. THE FEATURES
Earlier, in Section VI, we described various features occur-
ring in BPMN diagrams, and all of them occur in the pizza
delivery example.

The first described feature was the ‘‘simple task’’
(Sec. VI-A), i.e., a simple invocation of a state machine
transition. Such tasks are quite common in our exam-
ple (nodes 2, 4, 5, 6, 19, 22, and 23). The user invokes
a given transition, immediately receives the response and
continues with another task. From each of these tasks,

we see an invoking message flow from the task node
to the state machine participant, and we do not see
implicit returning message flows anti-parallel to the respec-
tive invoking message flows (the algorithm will infer
these).

The ‘‘user decides’’ scenario (Sec. VI-B) occurs twice in
the example. The first occurrence is the CRUD loop between
creating and submitting the order (nodes 2, 4, 5, and 6).
The second occurrence is at the end when the delivery boy
may not find the customer (nodes 19, 22, and 23).
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FIGURE 21. The Pizza Order State Machine (from Fig. 20).

The ‘‘machine decides’’ scenario (Sec. VI-C) only occurs
once when the pizza order state machine decides whether or
not to accept the order (nodes 7, 9, and 10). Moreover, this
feature is combined with the synchronization between users
(Sec. VI-D; nodes 7, 17, and 18).

C. HIGHLIGHTS FROM THE STS ALGORITHM EXECUTION
Once we let the STS algorithm process the BPMN dia-
gram (Fig. 20), the algorithm will identify the invoking and
the (potential) receiving nodes as marked using the letters
I and R (R+), respectively; I = {2, 4, 5, 6, 7, 19, 22, 23},
R = {2, 4, 5, 6, 9, 10, 19, 22, 23}, and R+ = R ∪ {18}. Note
that nodes 13 and 21 are not invoking or receiving as the
message flows do not involve the state machine. Transition
relation T and state relation S are the following:

T = {(2, {2} , create) , (4, {4} , setAddress) ,

(5, {5} , setSize) , (6, {6} , delete) ,

(7, {9, 10} , submit) , (19, {19} , confirm) ,

(22, {22} , fail) , (23, {23} , deliver)}

S = {(0, {2}, {Not Exists}), (2, {4, 5, 6, 7} , {Draft}) ,

(4, {4, 5, 6, 7} , {Draft}) , (5, {4, 5, 6, 7} , {Draft}) ,

(6, {8} , {Not Exists}) , (9, {16} , {Received}) ,

(10, {4, 5, 6, 7, 14} , {Draft}) ,

(18, {19} , {Received}) , (19, {21, 22} , {Baking}) ,

(22, {24} , {Fail}) , (23, {25} , {Delivered})}

D. THE RESULT
The result is the Smalldb state machine pictured in Fig. 21. As
before, the ‘‘Not Exists’’ state is drawn twice, and the three
loops in the ‘‘Draft’’ state are drawn using a single arrow for
better readability.
The ‘‘user decides’’ feature is transformed into a simple

branching from the ‘‘Draft’’ and ‘‘Baking’’ states. The
‘‘machine decides’’ feature is represented using the nonde-
terministic ‘‘submit’’ transition.
As we can see, the state machine is getting complicated

even for this relatively simple business process. Without a

thorough understanding of the business process, it would be
tough to draw this state diagram. It would likely involve
many discussions with a customer, and many errors would be
found only when the first prototypes of the application were
released for review. The BPMN diagrams help to share the
needed knowledge regarding the business process and design
the application correctly from the beginning.

XVI. RELATED WORK
A. UML SEQUENCE DIAGRAMS
UML sequence diagrams [9] are designed to describe inter-
actions between multiple entities, while internals of the enti-
ties are omitted; unlike BPMN diagrams which also model
internal workflows of its participants. A typical use of a UML
sequence diagram is to picture a scenario of nontrivial method
calls or network communication. Because the sequence dia-
grams are not very practical in regard to branching, they are
mostly used to represent a single scenario of possible variants
with a separate diagram for each case.
Hypothetically, we could apply the STS algorithm to UML

sequence diagrams in a similar manner to what we do with
BPMN diagrams (the state annotations would have to be
added too). These two types of diagrams are not very different
at a conceptual level, and the STS algorithm would likely
provide us a meaningful result. However, the question is
whether the syntax of UML sequence diagrams fits our needs.
For example, Fig. 22 presents the simple CRUD entity

described in Section X. In comparison with Fig. 18, the
BPMN representation of the same entity, we can see that the
diagrams are quite similar. Both present the same two partic-
ipants with the same communication (the returning message
flows are implicit in the BPMN diagram), and both contain
the same loop.
While both UML sequence diagrams and BPMN diagrams

provide us with a very similar description of a given business
process, the UML sequence diagrams are not as easy for
nontechnical customers to understand when designing web
applications. Therefore, we address the BPMN diagrams in
this paper, while the UML option remains open. Alternately,
the STS algorithm is not limited to web applications with
the Smalldb framework; for example, technical applications,
such as test synthesis or protocol verification, may not require
details on participant behavior such that the simpler syntax
may be more practical, and the STS algorithm can operate as
long as the syntax preserves the reachability properties.

B. BPMN EXECUTION ENGINES
Efforts concerning the direct interpretation and execu-
tion of BPMN diagrams [2] (and related technologies,
e.g., BPEL) have led to the creation of many enterprise
tools. Most of them, such as, for example, Camunda
BPMN Engine [10], [11], iterate BPMN diagrams as if
they were Petri Nets and perform specified actions via
(micro)service [12] orchestration or human task flow control.
While this approach seems to be reasonable and may help
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FIGURE 22. CRUD entity in a UML sequence diagram.

to manage complex business processes, it has significant
drawbacks that have prevented the broad adoption of these
tools over recent years.

The obvious issue is that such tools require the relatively
high technological complexity of the modeled system. Even
a simple use of a microservice requires a nontrivial amount
of code, libraries, and infrastructure to get started. Most
information systems are technologically (vertically) simple
applications, often just a nice facade over an SQL database.
The complexity of such systems lies in the wide (horizontal)
number of features and covered use cases. Therefore, adding
technological complexity to such a shallow but wide applica-
tion has a multiplicative effect on the overall complexity (and
price) of the system.

To identify a less obvious issue, we need to find to which
level of abstraction our model belongs. BPMN is generally a
high-level notation suited for conceptual models of a business
process. Alternately, the execution requires many low-level
details available only in the source code of the application and
the orchestrated microservices. Both high-level and low-level
models are necessary during development of the application,
but fundamental properties of the models are in contradic-
tion. We cannot add execution details to a conceptual model
because it would make the model incredibly complex, which
is the opposite of what we expect it to be. Stated another way,
the high-level concepts are useless in a low-level execution
model. As a result, we need to have both models and establish
a connection between them, i.e., identify and name low-level
features in the high-level model, but we do not specify them
there.

The STS algorithm does not try to execute a process
diagram, it only extracts the described business logic and
provides a specialized model for use on lower levels of
abstraction. In particular, from a high-level BPMN diagram,
the algorithm infers a low-level state machine, which can
be directly interpreted by, for example, the Smalldb frame-
work. Clearly, the high-level model does not provide all of
the details. Therefore, the inferred state machine is only a

skeleton to be filled by a programmer rather than a complete
implementation, but it still provides a valuable automated
connection between the two levels of abstraction.

C. WS-BPEL AND BPMN
BPMN and WS-BPEL (commonly known as BPEL) are two
technologies trying to establish a symbiotic relation, combin-
ing the graphical language of BPMN with the executability
of BPEL.

WS-BPEL, Web Services Business Process Execution
Language [13], is a web services orchestration language
based on XML andWSDL. It defines how individual services
are connected together and how they should interact with each
other. It does not define how the service should be imple-
mented; the point of BPEL is to orchestrate heterogeneous
services into a cooperating system.

The scopes of the STS algorithm and WS-BPEL are
distinct but not completely unrelated. Combination of
WS-BPEL with the STS algorithm might provide program-
mers with a complete specification of inputs and outputs of
the transitions in the inferred state machine, while BPMN
diagrams provide us only with the existence of the transition.

In this paper, we have assumed interaction between
humans and machines via a simple web application; how-
ever, a combination of WS-BPEL, BPMN, and the STS
algorithm in the service-oriented architecture (SOA) could
provide us with useful models of both the orchestration and
the orchestrated services, whereWS-BPEL describes interac-
tions between the services and the STS algorithm infers logic
of the services from the BPMN diagrams.

D. INDUCTION OF REGULAR LANGUAGES
Various approaches to finite automata synthesis, such as
grammatical inference, induction of regular languages,
automata learning [14]–[16], and machine learning, are gen-
erally all based on a common idea: induce compact rules from
a provided set of input sequences. These techniques expect
little to no other contextual knowledge, and because of that,
they cannot benefit from this knowledge, which often leads
to exponential complexity.

It may be possible to find all possible paths through a
BPMN diagram and then feed the encountered message flows
as input symbols to these algorithms and receive a reasonable
result. However, if the diagram contains loops, then the num-
ber of paths is infinite; therefore, we cannot be sure that we
found all states and did not miss a hidden state, which would
appear if a loop was iterated one more time.

The fundamental difference of the STS algorithm is that,
instead of analyzing possible input sequences, the STS
algorithm identifies basic substructures, paths that connect
interactions between the automaton and its surroundings, uti-
lizing a specification which does not describe the automaton
explicitly.
The description of the desired automaton is already present

in the source BPMN diagrams; we just need to find it. This
unique approach efficiently deals with cycles and provides
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reliable results, even for large scenarios thanks to its linear
complexity.

XVII. CONCLUSION
The presented STS algorithm provides a tool to extract a
state machine from a BPMN diagram. The purpose of the
STS algorithm is to aid during the web application devel-
opment process, specifically to automate transition from the
high-level model, the BPMN diagram, to the low-level imple-
mentation, the Smalldb state machine. This is useful because
it is easier to draw and understand scenarios in the form of
BPMN diagrams rather than state machines or even source
code.

The STS algorithm analyzes BPMN diagrams, validates
their consistency and can detect various design flaws dur-
ing discussions with a customer, long before a program-
mer is involved. Later, during the implementation phase of
the project, the STS algorithm, together with the Smalldb
framework, provides the programmer with a skeleton of the
model layer of the web application. To complete the model
layer, the programmer implements individual transitions of
the inferred state machine, as these details are not modeled in
the business process model (only their existence is defined).

The introduction of the STS algorithm changes our under-
standing of the concept of state. In the traditional theory of
finite automata, a state is a static point between two transi-
tions. The STS algorithm shows us that any state is a path
between two transitions, but it is the rest of the world who
walks the path. This relation is reflected by the duality of
the state relation S and transition relation T used by the STS
algorithm when constructing the state machine.

The concept of isomorphic processes is another concept
the STS algorithm shows us. This rather trivial idea hidden
in plain sight can be expressed using a pair of processes:
‘‘When a user uses a tool, the tool is being used.’’ With this
realization, we do not have to model the same process twice;
once the user’s point of view is modeled, the tool’s behavior
can be inferred. The question to answer is who controls the
process, i.e., who decides the next action, either the user or the
tool (machine). Based on this concept and the assumption of
a single-threaded implementation of the state machine and its
users, we have provided a few syntactical shortcuts to make
the BPMN diagrams easier to draw and understand, though
multithreaded models may be an intriguing topic of further
research.

In the end, we presented a practical application of the
STS algorithm for the Pizza Delivery Example, where the
STS algorithm infers the order state machine, which then
orchestrates a business process of three humans and a pizza.
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